![標(biāo)準(zhǔn)等腰三角形_第1頁](http://file4.renrendoc.com/view/79ac0cca1be7eabdd719c9feb6d35d7a/79ac0cca1be7eabdd719c9feb6d35d7a1.gif)
![標(biāo)準(zhǔn)等腰三角形_第2頁](http://file4.renrendoc.com/view/79ac0cca1be7eabdd719c9feb6d35d7a/79ac0cca1be7eabdd719c9feb6d35d7a2.gif)
![標(biāo)準(zhǔn)等腰三角形_第3頁](http://file4.renrendoc.com/view/79ac0cca1be7eabdd719c9feb6d35d7a/79ac0cca1be7eabdd719c9feb6d35d7a3.gif)
![標(biāo)準(zhǔn)等腰三角形_第4頁](http://file4.renrendoc.com/view/79ac0cca1be7eabdd719c9feb6d35d7a/79ac0cca1be7eabdd719c9feb6d35d7a4.gif)
![標(biāo)準(zhǔn)等腰三角形_第5頁](http://file4.renrendoc.com/view/79ac0cca1be7eabdd719c9feb6d35d7a/79ac0cca1be7eabdd719c9feb6d35d7a5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
八年級上冊13.3
等腰三角形
(第1課時)ABC等腰三角形:有兩條邊相等的三角形,
叫做等腰三角形.等腰三角形的概念相等的兩條邊叫做腰,另一條邊叫做底邊,底邊與腰的夾角叫做底角.兩腰所夾的角叫做頂角,腰腰底邊頂角底角回顧如圖,把一張長方形的紙按圖中虛線對折,并剪去綠色部分,再把它展開,得到的△ABC有什么特點?ABCAB=AC等腰三角形活動(一):動手操作上面剪出的等腰三角形是軸對稱圖形嗎?ABCD把剪出的等腰三角形ABC沿折痕對折,找出其中重合的線段和角,填入下表:重合的線段重合的角
等腰三角形除了兩腰相等以外,你還能發(fā)現(xiàn)它的其他性質(zhì)嗎?AB=ACBD=CDAD=AD∠B=∠C∠ADB=∠ADC∠BAD=∠CAD活動(二):細(xì)心觀察大膽猜想性質(zhì)1(等邊對等角)等腰三角形的兩個底角相等。ABCD已知:△ABC中,AB=AC求證:∠B=C想一想:1.如何證明兩個角相等?議一議:2.如何構(gòu)造兩個全等的三角形?活動(三):小組討論已知:如圖,在△ABC中,AB=AC.求證:∠B=∠C.ABC等腰三角形的兩個底角相等。D證明:作底邊的中線AD,則BD=CDAB=AC(已知)BD=CD(已作)AD=AD(公共邊)∴△BAD≌△CAD(SSS).∴∠B=∠C(全等三角形的對應(yīng)角相等).在△BAD和△CAD中方法一:作底邊上的中線已知:如圖,在△ABC中,AB=AC.求證:∠B=∠C.ABC等腰三角形的兩個底角相等。D證明:作頂角的平分線AD,則∠1=∠2AB=AC(已知)∠1=∠2(已作)AD=AD(公共邊)∴△BAD≌△CAD(SAS).∴∠B=∠C(全等三角形的對應(yīng)角相等).方法二:作頂角的平分線在△BAD和△CAD中12已知:如圖,在△ABC中,AB=AC.求證:∠B=∠C.ABC等腰三角形的兩個底角相等。D證明:作底邊的高線AD,則∠BDA=∠CDA=90°AB=AC(已知)AD=AD(公共邊)∴Rt△BAD≌Rt△CAD(HL).∴∠B=∠C(全等三角形的對應(yīng)角相等).方法三:作底邊的高線在Rt△BAD和Rt△CAD中想一想:
剛才的證明除了能得到∠B=∠C你還能發(fā)現(xiàn)什么?重合的線段重合的角
ABDCAB=ACBD=CD
AD=AD∠B=
∠C.∠BAD=∠CAD
∠ADB=∠ADC=90°等腰三角形頂角的平分線平分底邊并且垂直于底邊.性質(zhì)2(等腰三角形三線合一)是真是假ABCD等腰三角形的頂角平分線與底邊上的中線,底邊上的高互相重合性質(zhì)2可以分解為三個命題,本節(jié)課證明“等腰三角形的底邊上的中線也是底邊上的高和頂角平分線”.探索并證明等腰三角形的性質(zhì)已知:如圖,△ABC中,AB=AC,AD是底邊BC的中線.求證:∠BAD=∠CAD,AD⊥BC.探索并證明等腰三角形的性質(zhì)ABCD證明:∵AD是底邊BC的中線,∴BD=CD.∵AB=AC,
BD=CD,
AD=AD,∴△ABD≌△ACD(SSS).探索并證明等腰三角形的性質(zhì)已知:如圖,△ABC中,AB=AC,AD是底邊BC的中線.求證:∠BAD=∠CAD,AD⊥BC.ABCD證明:∴∠BAD=∠CAD,∠ADB=∠ADC.∵∠ADB+∠ADC=180°,∴∠ADB=90°.
∴AD⊥BC.探索并證明等腰三角形的性質(zhì)在等腰三角形性質(zhì)的探索過程和證明過程中,“折痕”“輔助線”發(fā)揮了非常重要的作用,由此,你能發(fā)現(xiàn)等腰三角形具有什么特征?
等腰三角形是軸對稱圖形,底邊上的中線(頂角平分線、底邊上的高)所在直線就是它的對稱軸.課堂練習(xí)練習(xí)1
填空:(1)如圖,△ABC中,AB=AC,∠A=36°,則∠B
=
;ABC課堂練習(xí)練習(xí)1
填空:(2)如圖,△ABC中,AB=AC,∠B=36°,則∠A=
;
ABC課堂練習(xí)練習(xí)2
如圖,△ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底邊BC上的高,標(biāo)出∠B,∠C,∠BAD,∠DAC的度數(shù),并寫出圖中所有相等的線段.ABCD練習(xí)3、如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。ABCD解:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD(等邊對等角)設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,從而∠ABC=∠C=∠BDC=2x,于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°,在△ABC中,∠A=36°,∠ABC=∠C=72°x⌒2x⌒2x⌒⌒2x課堂練習(xí)41.已知等腰三角形的一邊長等于5,另一邊長等于6,則它的周長為_________。2.如果等腰三角形的一個角為36°,那么它的另外兩個角度數(shù)是_________。3.如果等腰三角形的一個角為120°,那么它的另外兩個角度數(shù)是_________。軸對稱圖形兩個底角相等,簡稱“等邊對等角”頂角平分線、底邊上的中線、和底邊上的高互相重合,簡稱“三線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代智能家居裝修的智能化照明方案
- 用醫(yī)療級設(shè)備輔助個人健康管理-針對男性的講解
- 環(huán)保科技在辦公空間改造中的應(yīng)用案例分析報告
- 《衣服的學(xué)問:3 我的扎染作品》說課稿-2023-2024學(xué)年三年級下冊綜合實踐活動滬科黔科版
- 七年級生物上冊 第2單元 第2章 第4節(jié)《單細(xì)胞生物》說課稿 (新版)新人教版
- 2025年度電視劇導(dǎo)演聘用合同書(古裝武俠)
- 2025年度車輛抵押抵貨款分期合同
- 18古詩三首《書湖陰先生壁》說課稿2024-2025學(xué)年統(tǒng)編版語文六年級上冊
- 招聘會合作合同(2篇)
- 二零二五年度數(shù)字經(jīng)濟(jì)基礎(chǔ)設(shè)施建設(shè)貨物抵押借款協(xié)議
- 農(nóng)產(chǎn)品貯運(yùn)與加工考試題(附答案)
- 學(xué)校財務(wù)年終工作總結(jié)4
- 2025年人民教育出版社有限公司招聘筆試參考題庫含答案解析
- 康復(fù)醫(yī)學(xué)治療技術(shù)(士)復(fù)習(xí)題及答案
- 鋼鐵是怎樣煉成的鋼鐵讀書筆記
- 《血管性血友病》課件
- 2025年汽車加氣站作業(yè)人員安全全國考試題庫(含答案)
- 2024年司法考試完整真題及答案
- 高三日語一輪復(fù)習(xí)日語助詞「に」和「を」的全部用法課件
- 2024年山東省高考政治試卷真題(含答案逐題解析)
- 煙葉復(fù)烤能源管理
評論
0/150
提交評論