格林公式(公開教學(xué)用)_第1頁
格林公式(公開教學(xué)用)_第2頁
格林公式(公開教學(xué)用)_第3頁
格林公式(公開教學(xué)用)_第4頁
格林公式(公開教學(xué)用)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

格林公式及其應(yīng)用從不定積分與定積分的引入來考慮兩者之間沒有任何關(guān)系,但牛頓—萊布尼茨公式將二者聯(lián)系起來。格林公式同樣是將看似截然不同的兩類積分:二重積分與曲線積分有機的統(tǒng)一起來。一、格林(Green)公式1、預(yù)備知識:為了學(xué)習(xí)格林公式,我們先介紹三個基本概念:單連通區(qū)域、復(fù)連通區(qū)域、平面曲線的正向。

單連通區(qū)域D

1)單連通區(qū)域:如果D內(nèi)任一閉曲線所圍成的部分全都屬于D;D內(nèi)任意一條閉曲線都可以連續(xù)地收縮為一點,這一點也屬于D;

D為無“洞”的區(qū)域。

2)復(fù)連通區(qū)域:

存在一些閉曲線它圍成的區(qū)域不全屬于D;

存在一些閉曲線不能連續(xù)收縮為D中的點;

有“洞”的區(qū)域(包括“點洞”)。復(fù)連通區(qū)域D點洞洞

3)平面曲線L的正向:當(dāng)人(觀察者)沿L的方向行走時,D內(nèi)在靠近人的一側(cè)始終在人的左側(cè)。外圈是逆時針方向;內(nèi)圈是順時針方向。DD洞(1)D是由分段光滑(或光滑)的有向

——格林公式(3)取正向.則有閉曲線圍成;(2)函數(shù)在D上具有一階連續(xù)偏導(dǎo)數(shù);

2、格林(Green)公式(定理1)3、說明:(2)函數(shù)在D上必須具(1)L必須是光滑或分段光滑的有向閉曲線,如果不封閉怎么辦?有一階連續(xù)偏導(dǎo)數(shù),如果在有些點處不滿足(不存在或存在不連續(xù)),怎么解決?(重點與難點)(3)L要求取正向.(若不是正向?)同學(xué)們思考一下,說明的第(2)條其實是可以修改的,應(yīng)該改成什么?(4)二重積分的被積函數(shù)必須是

例1計算下列曲線積分:其中L為星形線的正向。利用后面學(xué)過的知識發(fā)現(xiàn)積分與路徑無關(guān),結(jié)論顯然是0.其中L為上半圓周沿逆時針方向從A點到點。

5、格林公式的證明(體現(xiàn)分析過程)證明(1)先考慮積分區(qū)域既是型,又是型區(qū)域的情況,如圖oDABoDCE

型區(qū)域

型區(qū)域按照型區(qū)域考慮同理,按照型區(qū)域考慮(2)當(dāng)積分區(qū)域不滿足既是型,又是型時,如下圖(分割成(1)的情況)DDDL(3)當(dāng)積分區(qū)域D為復(fù)連通區(qū)域時,如右圖將復(fù)連通區(qū)域沿著某一條線段割開,將復(fù)連通區(qū)域轉(zhuǎn)化為單連通區(qū)域(已證)例2計算其中L為一條無重點分段光滑且不經(jīng)過原點的連續(xù)閉曲線,L的方向為逆時針方向。二、格林公式的應(yīng)用1、計算曲線積分1)設(shè)P,Q在D內(nèi)具有一階連續(xù)偏導(dǎo)數(shù)補充定理:2)在D內(nèi)恒有3)為D內(nèi)任意兩條同向閉曲線;4)各自所圍的區(qū)域中有相同的不

屬于D的點,則設(shè)為圍繞原點的簡單閉曲線,圍成的區(qū)域為,與L同向當(dāng)利用格林公式,結(jié)論為0.

當(dāng)時解:例3設(shè)C是圍繞原點的任意一條光滑簡單閉曲線,求(第二屆中國大學(xué)生數(shù)學(xué)競賽非數(shù)學(xué)類數(shù)學(xué)競賽題15分,其中的三分之一部分,前面兩部分是05年高等數(shù)學(xué)一試題)解:設(shè)為圍繞原點的簡單閉曲線,圍成的區(qū)域為,與C同向,例4已知平面區(qū)域

D的邊界取正向邊界,試證(首屆中國大學(xué)生數(shù)學(xué)競賽非數(shù)學(xué)類數(shù)學(xué)競賽題15分)右邊解:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論