2023屆北京朝陽區(qū)第十七中學中考數(shù)學仿真試卷含解析_第1頁
2023屆北京朝陽區(qū)第十七中學中考數(shù)學仿真試卷含解析_第2頁
2023屆北京朝陽區(qū)第十七中學中考數(shù)學仿真試卷含解析_第3頁
2023屆北京朝陽區(qū)第十七中學中考數(shù)學仿真試卷含解析_第4頁
2023屆北京朝陽區(qū)第十七中學中考數(shù)學仿真試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一個盒子內(nèi)裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是()A. B. C. D.2.如圖,△ABC的內(nèi)切圓⊙O與AB,BC,CA分別相切于點D,E,F(xiàn),且AD=2,BC=5,則△ABC的周長為()A.16 B.14 C.12 D.103.計算的結(jié)果為()A.1 B.x C. D.4.若α,β是一元二次方程3x2+2x-9=0的兩根,則的值是(

).A. B.- C.- D.5.對于函數(shù)y=,下列說法正確的是()A.y是x的反比例函數(shù) B.它的圖象過原點C.它的圖象不經(jīng)過第三象限 D.y隨x的增大而減小6.一次函數(shù)y=kx﹣1的圖象經(jīng)過點P,且y的值隨x值的增大而增大,則點P的坐標可以為()A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)7.在函數(shù)y=中,自變量x的取值范圍是()A.x≥0 B.x≤0 C.x=0 D.任意實數(shù)8.如圖,正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,CH┴AF與點H,那么CH的長是()A. B. C. D.9.數(shù)據(jù)4,8,4,6,3的眾數(shù)和平均數(shù)分別是()A.5,4 B.8,5 C.6,5 D.4,510.某射擊選手10次射擊成績統(tǒng)計結(jié)果如下表,這10次成績的眾數(shù)、中位數(shù)分別是()成績(環(huán))78910次數(shù)1432A.8、8 B.8、8.5 C.8、9 D.8、10二、填空題(共7小題,每小題3分,滿分21分)11.已知邊長為5的菱形中,對角線長為6,點在對角線上且,則的長為__________.12.如圖,點A為函數(shù)y=(x>0)圖象上一點,連接OA,交函數(shù)y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△ABC的面積為______.13.如圖,矩形ABCD中,AB=2AD,點A(0,1),點C、D在反比例函數(shù)y=(k>0)的圖象上,AB與x軸的正半軸相交于點E,若E為AB的中點,則k的值為_____.14.計算(2+1)(2-1)的結(jié)果為_____.15.如圖,在菱形ABCD中,對角線AC、BD相交于點O,點E是線段BO上的一個動點,點F為射線DC上一點,若∠ABC=60°,∠AEF=120°,AB=4,則EF可能的整數(shù)值是_____.16.的算術平方根是_______.17.反比例函數(shù)y=的圖像經(jīng)過點(2,4),則k的值等于__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,中,于,點分別是的中點.(1)求證:四邊形是菱形(2)如果,求四邊形的面積19.(5分)某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球多15元,王老師從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?根據(jù)消費者需求,該網(wǎng)店決定用不超過8780元購進甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進價為50元,乙種羽毛球每筒的進價為40元.①若設購進甲種羽毛球m筒,則該網(wǎng)店有哪幾種進貨方案?②若所購進羽毛球均可全部售出,請求出網(wǎng)店所獲利潤W(元)與甲種羽毛球進貨量m(筒)之間的函數(shù)關系式,并說明當m為何值時所獲利潤最大?最大利潤是多少?20.(8分)在△ABC中,∠A,∠B都是銳角,且sinA=,tanB=,AB=10,求△ABC的面積.21.(10分)先化簡,再求值:﹣÷,其中a=1.22.(10分)如圖,AD是△ABC的中線,CF⊥AD于點F,BE⊥AD,交AD的延長線于點E,求證:AF+AE=2AD.23.(12分)已知:二次函數(shù)圖象的頂點坐標是(3,5),且拋物線經(jīng)過點A(1,3).(1)求此拋物線的表達式;(2)如果點A關于該拋物線對稱軸的對稱點是B點,且拋物線與y軸的交點是C點,求△ABC的面積.24.(14分)如圖,已知A(3,0),B(0,﹣1),連接AB,過B點作AB的垂線段BC,使BA=BC,連接AC.如圖1,求C點坐標;如圖2,若P點從A點出發(fā)沿x軸向左平移,連接BP,作等腰直角△BPQ,連接CQ,當點P在線段OA上,求證:PA=CQ;在(2)的條件下若C、P,Q三點共線,求此時∠APB的度數(shù)及P點坐標.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

畫樹狀圖求出共有12種等可能結(jié)果,符合題意得有2種,從而求解.【詳解】解:畫樹狀圖得:∵共有12種等可能的結(jié)果,兩次都摸到白球的有2種情況,∴兩次都摸到白球的概率是:.故答案為C.【點睛】本題考查畫樹狀圖求概率,掌握樹狀圖的畫法準確求出所有的等可能結(jié)果及符合題意的結(jié)果是本題的解題關鍵.2、B【解析】

根據(jù)切線長定理進行求解即可.【詳解】∵△ABC的內(nèi)切圓⊙O與AB,BC,CA分別相切于點D,E,F(xiàn),∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周長=2+2+5+5=14,故選B.【點睛】本題考查了三角形的內(nèi)切圓以及切線長定理,熟練掌握切線長定理是解題的關鍵.3、A【解析】

根據(jù)同分母分式的加減運算法則計算可得.【詳解】原式===1,故選:A.【點睛】本題主要考查分式的加減法,解題的關鍵是掌握同分母分式的加減運算法則.4、C【解析】分析:根據(jù)根與系數(shù)的關系可得出α+β=-、αβ=-3,將其代入=中即可求出結(jié)論.詳解:∵α、β是一元二次方程3x2+2x-9=0的兩根,∴α+β=-,αβ=-3,∴===.故選C.點睛:本題考查了根與系數(shù)的關系,牢記兩根之和等于-、兩根之積等于是解題的關鍵.5、C【解析】

直接利用反比例函數(shù)的性質(zhì)結(jié)合圖象分布得出答案.【詳解】對于函數(shù)y=,y是x2的反比例函數(shù),故選項A錯誤;它的圖象不經(jīng)過原點,故選項B錯誤;它的圖象分布在第一、二象限,不經(jīng)過第三象限,故選項C正確;第一象限,y隨x的增大而減小,第二象限,y隨x的增大而增大,故選C.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),正確得出函數(shù)圖象分布是解題關鍵.6、C【解析】【分析】根據(jù)函數(shù)圖象的性質(zhì)判斷系數(shù)k>0,則該函數(shù)圖象經(jīng)過第一、三象限,由函數(shù)圖象與y軸交于負半軸,則該函數(shù)圖象經(jīng)過第一、三、四象限,由此得到結(jié)論.【詳解】∵一次函數(shù)y=kx﹣1的圖象的y的值隨x值的增大而增大,∴k>0,A、把點(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合題意;B、把點(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合題意;C、把點(2,2)代入y=kx﹣1得到:k=>0,符合題意;D、把點(5,﹣1)代入y=kx﹣1得到:k=0,不符合題意,故選C.【點睛】考查了一次函數(shù)圖象上點的坐標特征,一次函數(shù)的性質(zhì),根據(jù)題意求得k>0是解題的關鍵.7、C【解析】

當函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).據(jù)此可得.【詳解】解:根據(jù)題意知,

解得:x=0,

故選:C.【點睛】本題主要考查函數(shù)自變量的取值范圍,函數(shù)自變量的范圍一般從三個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).8、D【解析】

連接AC、CF,根據(jù)正方形性質(zhì)求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長.【詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.【點睛】本題考查了正方形的性質(zhì)、勾股定理及直角三角形的面積,熟記各性質(zhì)并作輔助線構造出直角三角形是解題的關鍵.9、D【解析】

根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù),再根據(jù)平均數(shù)的計算公式求出平均數(shù)即可【詳解】∵4出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,∴眾數(shù)是4;這組數(shù)據(jù)的平均數(shù)是:(4+8+4+6+3)÷5=5;故選D.10、B【解析】

根據(jù)眾數(shù)和中位數(shù)的概念求解.【詳解】由表可知,8環(huán)出現(xiàn)次數(shù)最多,有4次,所以眾數(shù)為8環(huán);這10個數(shù)據(jù)的中位數(shù)為第5、6個數(shù)據(jù)的平均數(shù),即中位數(shù)為=8.5(環(huán)),故選:B.【點睛】本題考查了眾數(shù)和中位數(shù)的知識,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).二、填空題(共7小題,每小題3分,滿分21分)11、3或1【解析】

菱形ABCD中,邊長為1,對角線AC長為6,由菱形的性質(zhì)及勾股定理可得AC⊥BD,BO=4,分當點E在對角線交點左側(cè)時(如圖1)和當點E在對角線交點左側(cè)時(如圖2)兩種情況求BE得長即可.【詳解】解:當點E在對角線交點左側(cè)時,如圖1所示:∵菱形ABCD中,邊長為1,對角線AC長為6,∴AC⊥BD,BO==4,∵tan∠EAC=,解得:OE=1,∴BE=BO﹣OE=4﹣1=3,當點E在對角線交點左側(cè)時,如圖2所示:∵菱形ABCD中,邊長為1,對角線AC長為6,∴AC⊥BD,BO==4,∵tan∠EAC=,解得:OE=1,∴BE=BO﹣OE=4+1=1,故答案為3或1.【點睛】本題主要考查了菱形的性質(zhì),解決問題時要注意分當點E在對角線交點左側(cè)時和當點E在對角線交點左側(cè)時兩種情況求BE得長.12、6.【解析】

作輔助線,根據(jù)反比例函數(shù)關系式得:S△AOD=,S△BOE=,再證明△BOE∽△AOD,由性質(zhì)得OB與OA的比,由同高兩三角形面積的比等于對應底邊的比可以得出結(jié)論.【詳解】如圖,分別作BE⊥x軸,AD⊥x軸,垂足分別為點E、D,∴BE∥AD,

∴△BOE∽△AOD,

∴,

∵OA=AC,

∴OD=DC,

∴S△AOD=S△ADC=S△AOC,

∵點A為函數(shù)y=(x>0)的圖象上一點,

∴S△AOD=,

同理得:S△BOE=,

∴,

∴,

∴,

∴,

∴,

故答案為6.13、【解析】解:如圖,作DF⊥y軸于F,過B點作x軸的平行線與過C點垂直與x軸的直線交于G,CG交x軸于K,作BH⊥x軸于H,∵四邊形ABCD是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E為AB的中點,∴AD=AE,在△ADF和△EAO中,∵∠DAF=∠AEO,∠AFD=∠AOE=90°,AD=AE,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2,∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1k,解得k1=,k2=,∵k﹣1>0,∴k=.故答案為.點睛:本題考查了矩形的性質(zhì)和反比例函數(shù)圖象上點的坐標特征.圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.14、1【解析】

利用平方差公式進行計算即可.【詳解】原式=(2)2﹣1=2﹣1=1,故答案為:1.【點睛】本題考查了二次根式的混合運算:先把各二次根式化為最簡二次根式,在進行二次根式的乘除運算,然后合并同類二次根式.15、2,3,1.【解析】分析:根據(jù)題意得出EF的取值范圍,從而得出EF的值.詳解:∵AB=1,∠ABC=60°,∴BD=1,當點E和點B重合時,∠FBD=90°,∠BDC=30°,則EF=1;當點E和點O重合時,∠DEF=30°,則△EFD為等腰三角形,則EF=FD=2,∴EF可能的整數(shù)值為2、3、1.點睛:本題主要考查的就是菱形的性質(zhì)以及直角三角形的勾股定理,屬于中等難度的題型.解決這個問題的關鍵就是找出當點E在何處時取到最大值和最小值,從而得出答案.16、3【解析】

根據(jù)算術平方根定義,先化簡,再求的算術平方根.【詳解】因為=9所以的算術平方根是3故答案為3【點睛】此題主要考查了算術平方根的定義,解題需熟練掌握平方根和算術平方根的概念且區(qū)分清楚,才不容易出錯.要熟悉特殊數(shù)字0,1,-1的特殊性質(zhì).17、1【解析】解:∵點(2,4)在反比例函數(shù)的圖象上,∴,即k=1.故答案為1.點睛:本題考查的是反比例函數(shù)圖象上點的坐標特點,即反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2).【解析】

(1)先根據(jù)直角三角形斜邊上中線的性質(zhì),得出DE=AB=AE,DF=AC=AF,再根據(jù)AB=AC,點E、F分別是AB、AC的中點,即可得到AE=AF=DE=DF,進而判定四邊形AEDF是菱形;

(2)根據(jù)等邊三角形的性質(zhì)得出EF=5,AD=5,進而得到菱形AEDF的面積S.【詳解】解:(1)∵AD⊥BC,點E、F分別是AB、AC的中點,

∴Rt△ABD中,DE=AB=AE,

Rt△ACD中,DF=AC=AF,

又∵AB=AC,點E、F分別是AB、AC的中點,

∴AE=AF,

∴AE=AF=DE=DF,

∴四邊形AEDF是菱形;

(2)如圖,

∵AB=AC=BC=10,

∴EF=5,AD=5,

∴菱形AEDF的面積S=EF?AD=×5×5=.【點睛】本題考查菱形的判定與性質(zhì)的運用,解題時注意:四條邊相等的四邊形是菱形;菱形的面積等于對角線長乘積的一半.19、(1)該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)①進貨方案有3種,具體見解析;②當m=78時,所獲利潤最大,最大利潤為1390元.【解析】【分析】(1)設甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,由條件可列方程組,則可求得答案;(2)①設購進甲種羽毛球m筒,則乙種羽毛球為(200﹣m)筒,由條件可得到關于m的不等式組,則可求得m的取值范圍,且m為整數(shù),則可求得m的值,即可求得進貨方案;②用m可表示出W,可得到關于m的一次函數(shù),利用一次函數(shù)的性質(zhì)可求得答案.【詳解】(1)設甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,根據(jù)題意可得,解得,答:該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)①若購進甲種羽毛球m筒,則乙種羽毛球為(200﹣m)筒,根據(jù)題意可得,解得75<m≤78,∵m為整數(shù),∴m的值為76、77、78,∴進貨方案有3種,分別為:方案一,購進甲種羽毛球76筒,乙種羽毛球為124筒,方案二,購進甲種羽毛球77筒,乙種羽毛球為123筒,方案一,購進甲種羽毛球78筒,乙種羽毛球為122筒;②根據(jù)題意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W隨m的增大而增大,且75<m≤78,∴當m=78時,W最大,W最大值為1390,答:當m=78時,所獲利潤最大,最大利潤為1390元.【點睛】本題考查了二元一次方程組的應用、一元一次不等式組的應用、一次函數(shù)的應用,弄清題意找準等量關系列出方程組、找準不等關系列出不等式組、找準各量之間的數(shù)量關系列出函數(shù)解析式是解題的關鍵.20、【解析】

根據(jù)已知得該三角形為直角三角形,利用三角函數(shù)公式求出各邊的值,再利用三角形的面積公式求解.【詳解】如圖:由已知可得:∠A=30°,∠B=60°,∴△ABC為直角三角形,且∠C=90°,AB=10,∴BC=AB·sin30°=10=5,AC=AB·cos30°=10=,∴S△ABC=.【點睛】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.21、-1【解析】

原式第二項利用除法法則變形,約分后通分,并利用同分母分式的減法法則計算,約分得到最簡結(jié)果,把a的值代入計算即可求出值.【詳解】解:原式=﹣?2(a﹣3)=﹣==,當a=1時,原式==﹣1.【點睛】此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.22、證明見解析.【解析】

由題意易用角角邊證明△BDE≌△CDF,得到DF=DE,再用等量代換的思想用含有AE和AF的等式表示AD的長.【詳解】證明:∵CF⊥AD于,BE⊥AD,∴BE∥CF,∠EBD=∠FCD,又∵AD是△ABC的中線,∴BD=CD,∴在△BED與△CFD中,,∴△△BED≌△CFD(AAS)∴ED=FD,又∵AD=AF+DF①,

AD=AE-DE②,由①+②得:AF+AE=2AD.【點睛】該題考察了三角形全等的證明,利用全等三角形的性質(zhì)進行對應邊的轉(zhuǎn)化.23、(1)y=-(x-3)2+5(2)5【解析】

(1)設頂點式y(tǒng)=a(x-3)2+5,然后把A點坐標代入求出a即可得到拋物線的解析式;

(2)利用拋物線的對稱性得到B(5,3),再確定出C點坐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論