2023屆貴州省從江縣市級名校中考五模數學試題含解析_第1頁
2023屆貴州省從江縣市級名校中考五模數學試題含解析_第2頁
2023屆貴州省從江縣市級名校中考五模數學試題含解析_第3頁
2023屆貴州省從江縣市級名校中考五模數學試題含解析_第4頁
2023屆貴州省從江縣市級名校中考五模數學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.一次函數y=kx﹣1的圖象經過點P,且y的值隨x值的增大而增大,則點P的坐標可以為()A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)2.下列條件中不能判定三角形全等的是()A.兩角和其中一角的對邊對應相等 B.三條邊對應相等C.兩邊和它們的夾角對應相等 D.三個角對應相等3.下列說法中,正確的是()A.兩個全等三角形,一定是軸對稱的B.兩個軸對稱的三角形,一定是全等的C.三角形的一條中線把三角形分成以中線為軸對稱的兩個圖形D.三角形的一條高把三角形分成以高線為軸對稱的兩個圖形4.下列運算結果為正數的是()A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)5.若,則x-y的正確結果是()A.-1 B.1 C.-5 D.56.已知二次函數y=x2+bx﹣9圖象上A、B兩點關于原點對稱,若經過A點的反比例函數的解析式是y=,則該二次函數的對稱軸是直線()A.x=1 B.x= C.x=﹣1 D.x=﹣7.如圖是由幾個相同的小正方體搭成的一個幾何體,它的俯視圖是()A.B.C.D.8.如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為()A. B. C.5 D.9.如圖,在已知的△ABC中,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長為半徑作弧,兩弧相交于點M、N;②作直線MN交AB于點D,連接CD,則下列結論正確的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB10.如圖中任意畫一個點,落在黑色區(qū)域的概率是()A. B. C.π D.50二、填空題(本大題共6個小題,每小題3分,共18分)11.設△ABC的面積為1,如圖①,將邊BC、AC分別2等分,BE1、AD1相交于點O,△AOB的面積記為S1;如圖②將邊BC、AC分別3等分,BE1、AD1相交于點O,△AOB的面積記為S2;…,依此類推,則Sn可表示為________.(用含n的代數式表示,其中n為正整數)12.已知A(﹣4,y1),B(﹣1,y2)是反比例函數y=﹣圖象上的兩個點,則y1與y2的大小關系為__________.13.圓錐的底面半徑為2,母線長為6,則它的側面積為_____.14.如圖,折疊長方形紙片ABCD,先折出對角線BD,再將AD折疊到BD上,得到折痕DE,點A的對應點是點F,若AB=8,BC=6,則AE的長為_____.15.如圖,?ABCD中,M、N是BD的三等分點,連接CM并延長交AB于點E,連接EN并延長交CD于點F,以下結論:①E為AB的中點;②FC=4DF;③S△ECF=;④當CE⊥BD時,△DFN是等腰三角形.其中一定正確的是_____.16.如圖①,在矩形ABCD中,對角線AC與BD交于點O,動點P從點A出發(fā),沿AB勻速運動,到達點B時停止,設點P所走的路程為x,線段OP的長為y,若y與x之間的函數圖象如圖②所示,則矩形ABCD的周長為_____.三、解答題(共8題,共72分)17.(8分)先化簡,再求值:,其中x=﹣1.18.(8分)(5分)計算:(119.(8分)在平面直角坐標系中,△ABC的三個頂點坐標分別為A(2,﹣4),B(3,﹣2),C(6,﹣3).畫出△ABC關于軸對稱的△A1B1C1;以M點為位似中心,在網格中畫出△A1B1C1的位似圖形△A2B2C2,使△A2B2C2與△A1B1C1的相似比為2:1.20.(8分)如圖,已知拋物線y=ax2+bx+1經過A(﹣1,0),B(1,1)兩點.(1)求該拋物線的解析式;(2)閱讀理解:在同一平面直角坐標系中,直線l1:y=k1x+b1(k1,b1為常數,且k1≠0),直線l2:y=k2x+b2(k2,b2為常數,且k2≠0),若l1⊥l2,則k1?k2=﹣1.解決問題:①若直線y=2x﹣1與直線y=mx+2互相垂直,則m的值是____;②拋物線上是否存在點P,使得△PAB是以AB為直角邊的直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由;(3)M是拋物線上一動點,且在直線AB的上方(不與A,B重合),求點M到直線AB的距離的最大值.21.(8分)如圖,在平面直角坐標系中,直線y=x+2與x軸,y軸分別交于A,B兩點,點C(2,m)為直線y=x+2上一點,直線y=﹣x+b過點C.求m和b的值;直線y=﹣x+b與x軸交于點D,動點P從點D開始以每秒1個單位的速度向x軸負方向運動.設點P的運動時間為t秒.①若點P在線段DA上,且△ACP的面積為10,求t的值;②是否存在t的值,使△ACP為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由.22.(10分)如圖,△ABC中,∠A=90°,AB=AC=4,D是BC邊上一點,將點D繞點A逆時針旋轉60°得到點E,連接CE.(1)當點E在BC邊上時,畫出圖形并求出∠BAD的度數;(2)當△CDE為等腰三角形時,求∠BAD的度數;(3)在點D的運動過程中,求CE的最小值.(參考數值:sin75°=,cos75°=,tan75°=)23.(12分)如圖,△ABC三個定點坐標分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).請畫出△ABC關于y軸對稱的△A1B1C1;以原點O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請在第三象限內畫出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.24.2018年“清明節(jié)”前夕,宜賓某花店用1000元購進若干菊花,很快售完,接著又用2500元購進第二批花,已知第二批所購花的數量是第一批所購花數的2倍,且每朵花的進價比第一批的進價多元.(1)第一批花每束的進價是多少元.(2)若第一批菊花按3元的售價銷售,要使總利潤不低于1500元(不考慮其他因素),第二批每朵菊花的售價至少是多少元?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】【分析】根據函數圖象的性質判斷系數k>0,則該函數圖象經過第一、三象限,由函數圖象與y軸交于負半軸,則該函數圖象經過第一、三、四象限,由此得到結論.【詳解】∵一次函數y=kx﹣1的圖象的y的值隨x值的增大而增大,∴k>0,A、把點(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合題意;B、把點(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合題意;C、把點(2,2)代入y=kx﹣1得到:k=>0,符合題意;D、把點(5,﹣1)代入y=kx﹣1得到:k=0,不符合題意,故選C.【點睛】考查了一次函數圖象上點的坐標特征,一次函數的性質,根據題意求得k>0是解題的關鍵.2、D【解析】

解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;;C、符合SAS,能判定三角形全等;D、滿足AAA,沒有相對應的判定方法,不能由此判定三角形全等;故選D.3、B【解析】根據軸對稱圖形的概念對各選項分析判斷即可得解.解:A.兩個全等三角形,一定是軸對稱的錯誤,三角形全等位置上不一定關于某一直線對稱,故本選項錯誤;B.兩個軸對稱的三角形,一定全等,正確;C.三角形的一條中線把三角形分成以中線為軸對稱的兩個圖形,錯誤;D.三角形的一條高把三角形分成以高線為軸對稱的兩個圖形,錯誤.故選B.4、B【解析】

分別根據有理數的加、減、乘、除運算法則計算可得.【詳解】解:A、1+(﹣2)=﹣(2﹣1)=﹣1,結果為負數;B、1﹣(﹣2)=1+2=3,結果為正數;C、1×(﹣2)=﹣1×2=﹣2,結果為負數;D、1÷(﹣2)=﹣1÷2=﹣,結果為負數;故選B.【點睛】本題主要考查有理數的混合運算,熟練掌握有理數的四則運算法則是解題的關鍵.5、A【解析】由題意,得

x-2=0,1-y=0,

解得x=2,y=1.

x-y=2-1=-1,

故選:A.6、D【解析】

設A點坐標為(a,),則可求得B點坐標,把兩點坐標代入拋物線的解析式可得到關于a和b的方程組,可求得b的值,則可求得二次函數的對稱軸.【詳解】解:∵A在反比例函數圖象上,∴可設A點坐標為(a,).∵A、B兩點關于原點對稱,∴B點坐標為(﹣a,﹣).又∵A、B兩點在二次函數圖象上,∴代入二次函數解析式可得:,解得:或,∴二次函數對稱軸為直線x=﹣.故選D.【點睛】本題主要考查二次函數的性質,待定系數法求二次函數解析式,根據條件先求得b的值是解題的關鍵,注意掌握關于原點對稱的兩點的坐標的關系.7、D【解析】試題分析:俯視圖是從上面看到的圖形.從上面看,左邊和中間都是2個正方形,右上角是1個正方形,故選D.考點:簡單組合體的三視圖8、D【解析】解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE就是所求的最短距離.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值為.故選D.9、B【解析】

作弧后可知MN⊥CB,且CD=DB.【詳解】由題意性質可知MN是BC的垂直平分線,則MN⊥CB,且CD=DB,則CD+AD=AB.【點睛】了解中垂線的作圖規(guī)則是解題的關鍵.10、B【解析】

抓住黑白面積相等,根據概率公式可求出概率.【詳解】因為,黑白區(qū)域面積相等,所以,點落在黑色區(qū)域的概率是.故選B【點睛】本題考核知識點:幾何概率.解題關鍵點:分清黑白區(qū)域面積關系.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】試題解析:如圖,連接D1E1,設AD1、BE1交于點M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=,∵,∴,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S△ABM:=(n+1):(2n+1),∴Sn=.故答案為.12、y1<y1【解析】分析:根據反比例函數的性質和題目中的函數解析式可以判斷y1與y1的大小,從而可以解答本題.詳解:∵反比例函數y=-,-4<0,∴在每個象限內,y隨x的增大而增大,∵A(-4,y1),B(-1,y1)是反比例函數y=-圖象上的兩個點,-4<-1,∴y1<y1,故答案為:y1<y1.點睛:本題考查反比例函數圖象上點的坐標特征,解答本題的關鍵是明確反比例函數的性質,利用函數的思想解答.13、12π.【解析】試題分析:根據圓錐的底面半徑為2,母線長為6,直接利用圓錐的側面積公式求出它的側面積.解:根據圓錐的側面積公式:πrl=π×2×6=12π,故答案為12π.考點:圓錐的計算.14、3【解析】

先利用勾股定理求出BD,再求出DF、BF,設AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解決問題.【詳解】∵四邊形ABCD是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD1.∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.設AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.故答案為:3.【點睛】本題考查了矩形的性質、勾股定理等知識,解題時,我們常常設要求的線段長為x,然后根據折疊和軸對稱的性質用含x的代數式表示其他線段的長度,選擇適當的直角三角形,運用勾股定理列出方程求出答案.15、①③④【解析】

由M、N是BD的三等分點,得到DN=NM=BM,根據平行四邊形的性質得到AB=CD,AB∥CD,推出△BEM∽△CDM,根據相似三角形的性質得到,于是得到BE=AB,故①正確;根據相似三角形的性質得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故②錯誤;根據已知條件得到S△BEM=S△EMN=S△CBE,求得=,于是得到S△ECF=,故③正確;根據線段垂直平分線的性質得到EB=EN,根據等腰三角形的性質得到∠ENB=∠EBN,等量代換得到∠CDN=∠DNF,求得△DFN是等腰三角形,故④正確.【詳解】解:∵??M、N是BD的三等分點,∴DN=NM=BM,∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∴△BEM∽△CDM,∴,∴BE=CD,∴BE=AB,故①正確;∵AB∥CD,∴△DFN∽△BEN,∴=,∴DF=BE,∴DF=AB=CD,∴CF=3DF,故②錯誤;∵BM=MN,CM=2EM,∴△BEM=S△EMN=S△CBE,∵BE=CD,CF=CD,∴=,∴S△EFC=S△CBE=S△MNE,∴S△ECF=,故③正確;∵BM=NM,EM⊥BD,∴EB=EN,∴∠ENB=∠EBN,∵CD∥AB,∴∠ABN=∠CDB,∵∠DNF=∠BNE,∴∠CDN=∠DNF,∴△DFN是等腰三角形,故④正確;故答案為①③④.【點睛】考點:相似三角形的判定與性質;全等三角形的判定與性質;平行四邊形的性質.16、1【解析】分析:根據點P的移動規(guī)律,當OP⊥BC時取最小值2,根據矩形的性質求得矩形的長與寬,易得該矩形的周長.詳解:∵當OP⊥AB時,OP最小,且此時AP=4,OP=2,∴AB=2AP=8,AD=2OP=6,∴C矩形ABCD=2(AB+AD)=2×(8+6)=1.故答案為1.點睛:本題考查了動點問題的函數圖象,關鍵是根據所給函數圖象和點的運動軌跡判斷出AP=4,OP=2.三、解答題(共8題,共72分)17、.【解析】試題分析:試題解析:原式===當x=時,原式=.考點:分式的化簡求值.18、8+23【解析】試題分析:利用負整數指數冪,零指數冪、絕對值、特殊角的三角函數值的定義解答.試題解析:原式=9+1-(2-3)+2×3考點:1.實數的運算;2.零指數冪;3.負整數指數冪;4.特殊角的三角函數值.19、(1)詳見解析;(2)詳見解析.【解析】

試題分析:(1)直接利用關于x軸對稱點的性質得出對應點位置,進而得出答案;(2)直接利用位似圖形的性質得出對應點位置,進而得出答案;試題解析:(1)如圖所示:△A1B1C1,即為所求;(2)如圖所示:△A2B2C2,即為所求;考點:作圖-位似變換;作圖-軸對稱變換20、(1)y=﹣x2+x+1;(2)①-;②點P的坐標(6,﹣14)(4,﹣5);(3).【解析】

(1)根據待定系數法,可得函數解析式;

(2)根據垂線間的關系,可得PA,PB的解析式,根據解方程組,可得P點坐標;

(3)根據垂直于x的直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得MQ,根據三角形的面積,可得二次函數,根據二次函數的性質,可得面積的最大值,根據三角形的底一定時面積與高成正比,可得三角形高的最大值【詳解】解:(1)將A,B點坐標代入,得,解得,拋物線的解析式為y=;(2)①由直線y=2x﹣1與直線y=mx+2互相垂直,得2m=﹣1,即m=﹣;故答案為﹣;②AB的解析式為當PA⊥AB時,PA的解析式為y=﹣2x﹣2,聯立PA與拋物線,得,解得(舍),,即P(6,﹣14);當PB⊥AB時,PB的解析式為y=﹣2x+3,聯立PB與拋物線,得,解得(舍),即P(4,﹣5),綜上所述:△PAB是以AB為直角邊的直角三角形,點P的坐標(6,﹣14)(4,﹣5);(3)如圖:,∵M(t,﹣t2+t+1),Q(t,t+),∴MQ=﹣t2+S△MAB=MQ|xB﹣xA|=(﹣t2+)×2=﹣t2+,當t=0時,S取最大值,即M(0,1).由勾股定理,得AB==,設M到AB的距離為h,由三角形的面積,得h==.點M到直線AB的距離的最大值是.【點睛】本題考查了二次函數綜合題,涉及到拋物線的解析式求法,兩直線垂直,解一元二次方程組,及點到直線的最大距離,需要注意的是必要的輔助線法是解題的關鍵21、(1)4,5;(2)①7;②4或或或8.【解析】

分別令可得b和m的值;根據的面積公式列等式可得t的值;存在,分三種情況:當時,如圖1,當時,如圖2,當時,如圖3,分別求t的值即可.【詳解】把點代入直線中得:,點,直線過點C,,;由題意得:,中,當時,,,,中,當時,,,,,的面積為10,,,則t的值7秒;存在,分三種情況:當時,如圖1,過C作于E,,,即;當時,如圖2,,,;當時,如圖3,,,,,,,即;綜上,當秒或秒或秒或8秒時,為等腰三角形.【點睛】本題屬于一次函數綜合題,涉及的知識有:待定系數法求一次函數解析式,坐標與圖形性質,勾股定理,等腰三角形的判定,以及一次函數與坐標軸的交點,熟練掌握性質及定理是解本題的關鍵,并注意運用分類討論的思想解決問題.22、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD=60°;(3)CE=.【解析】

(1)如圖1中,當點E在BC上時.只要證明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;(2)分兩種情形求解①如圖2中,當BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形.②如圖3中,當CD=CE時,△DEC是等腰三角形;(3)如圖4中,當E在BC上時,E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先確定點E的運動軌跡是直線EE′(過點E與BC成60°角的直線上),可得EC的最小值即為線段CM的長(垂線段最短).【詳解】解:(1)如圖1中,當點E在BC上時.

∵AD=AE,∠DAE=60°,∴△ADE是等邊三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=(90°-60°)=15°.(2)①如圖2中,當BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形,∠BAD=∠BAC=45°.

②如圖3中,當CD=CE時,△DEC是等腰三角形.∵AD=AE,∴AC垂直平分線段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.

(3)如圖4中,當E在BC上時,E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.

∵∠AOE=∠DOE′,∠AE′D=∠AEO,∴△AOE∽△DOE′,∴AO:OD=EO:OE',∴AO:EO=OD:OE',∵∠AOD=∠EOE′,∴△AOD∽△EOE′,∴∠EE′O=∠ADO=60°,∴點E的運動軌跡是直線EE′(過點E與BC成60°角的直線上),∴EC的最小值即為線段CM的長(垂線段最短),設E′N=CN=a,則AN=4-a,在Rt△ANE′中,tan75°=AN:NE',∴2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論