2023屆河北省邯鄲市涉縣重點(diǎn)達(dá)標(biāo)名校中考押題數(shù)學(xué)預(yù)測卷含解析_第1頁
2023屆河北省邯鄲市涉縣重點(diǎn)達(dá)標(biāo)名校中考押題數(shù)學(xué)預(yù)測卷含解析_第2頁
2023屆河北省邯鄲市涉縣重點(diǎn)達(dá)標(biāo)名校中考押題數(shù)學(xué)預(yù)測卷含解析_第3頁
2023屆河北省邯鄲市涉縣重點(diǎn)達(dá)標(biāo)名校中考押題數(shù)學(xué)預(yù)測卷含解析_第4頁
2023屆河北省邯鄲市涉縣重點(diǎn)達(dá)標(biāo)名校中考押題數(shù)學(xué)預(yù)測卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知的周長等于,則它的內(nèi)接正六邊形ABCDEF的面積是()A. B. C. D.2.下列圖形中為正方體的平面展開圖的是()A. B.C. D.3.如圖,下列各數(shù)中,數(shù)軸上點(diǎn)A表示的可能是()A.4的算術(shù)平方根 B.4的立方根 C.8的算術(shù)平方根 D.8的立方根4.等腰三角形兩邊長分別是2cm和5cm,則這個三角形周長是()A.9cmB.12cmC.9cm或12cmD.14cm5.如果關(guān)于x的方程沒有實(shí)數(shù)根,那么c在2、1、0、中取值是()A.; B.; C.; D..6.已知a<1,點(diǎn)A(x1,﹣2)、B(x2,4)、C(x3,5)為反比例函數(shù)圖象上的三點(diǎn),則下列結(jié)論正確的是()A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x17.4的平方根是()A.16 B.2 C.±2 D.±8.如圖,△ABC中,AB=5,BC=3,AC=4,以點(diǎn)C為圓心的圓與AB相切,則⊙C的半徑為()A.2.3 B.2.4 C.2.5 D.2.69.如圖,A,B是半徑為1的⊙O上兩點(diǎn),且OA⊥OB.點(diǎn)P從A出發(fā),在⊙O上以每秒一個單位長度的速度勻速運(yùn)動,回到點(diǎn)A運(yùn)動結(jié)束.設(shè)運(yùn)動時間為x,弦BP的長度為y,那么下面圖象中可能表示y與x的函數(shù)關(guān)系的是A.① B.④ C.②或④ D.①或③10.實(shí)數(shù)a在數(shù)軸上的位置如圖所示,則化簡后為()A.7 B.﹣7 C.2a﹣15 D.無法確定二、填空題(共7小題,每小題3分,滿分21分)11.四邊形ABCD中,向量_____________.12.拋物線y=2x2+3x+k﹣2經(jīng)過點(diǎn)(﹣1,0),那么k=_____.13.如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半徑為1,點(diǎn)P是斜邊AB上的點(diǎn),過點(diǎn)P作⊙C的一條切線PQ(點(diǎn)Q是切點(diǎn)),則線段PQ的最小值為_____.14.如圖,數(shù)軸上點(diǎn)A表示的數(shù)為a,化簡:a_____.15.某校準(zhǔn)備從甲、乙、丙、丁四個科創(chuàng)小組中選出一組,參加區(qū)青少年科技創(chuàng)新大賽,表格反映的是各組平時成績的平均數(shù)(單位:分)及方差S2,如果要選出一個成績較好且狀態(tài)穩(wěn)定的組去參賽,那么應(yīng)選的組是_____.甲乙丙丁7887s211.20.91.816.一次函數(shù)y=kx+b的圖像如圖所示,則當(dāng)kx+b>0時,x的取值范圍為___________.17.如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正確的序號是(把你認(rèn)為正確的都填上).三、解答題(共7小題,滿分69分)18.(10分)如圖,在中,,以邊為直徑作⊙交邊于點(diǎn),過點(diǎn)作于點(diǎn),、的延長線交于點(diǎn).求證:是⊙的切線;若,且,求⊙的半徑與線段的長.19.(5分)為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車庫.如圖是停車庫坡道入口的設(shè)計圖,其中MN是水平線,MN∥AD,AD⊥DE,CF⊥AB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點(diǎn)C在DE上,CD=0.5米,CD是限高標(biāo)志牌的高度(標(biāo)志牌上寫有:限高米).如果進(jìn)入該車庫車輛的高度不能超過線段CF的長,則該停車庫限高多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈3.16)20.(8分)解不等式組,并把解集在數(shù)軸上表示出來.21.(10分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于,兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為.(1)求二次函數(shù)的解析式;(2)若點(diǎn)是拋物線在第四象限上的一個動點(diǎn),當(dāng)四邊形的面積最大時,求點(diǎn)的坐標(biāo),并求出四邊形的最大面積;(3)若為拋物線對稱軸上一動點(diǎn),直接寫出使為直角三角形的點(diǎn)的坐標(biāo).22.(10分)如圖,ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點(diǎn)D,過點(diǎn)D作⊙O的切線交CB的延長線于點(diǎn)E,交AC于點(diǎn)F.(1)求證:點(diǎn)F是AC的中點(diǎn);(2)若∠A=30°,AF=,求圖中陰影部分的面積.23.(12分)甲、乙兩公司各為“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人數(shù)是甲公司人數(shù)的,問甲、乙兩公司人均捐款各多少元?24.(14分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:(1)△ABE≌△CDF;(2)四邊形BFDE是平行四邊形.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

過點(diǎn)O作OH⊥AB于點(diǎn)H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內(nèi)接多邊形的性質(zhì)可得∠AOB=60°,即可證明△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OH的長,根據(jù)S正六邊形ABCDEF=6S△OAB即可得出答案.【詳解】過點(diǎn)O作OH⊥AB于點(diǎn)H,連接OA,OB,設(shè)⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.【點(diǎn)睛】此題考查了正多邊形與圓的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.2、C【解析】

利用正方體及其表面展開圖的特點(diǎn)依次判斷解題.【詳解】由四棱柱四個側(cè)面和上下兩個底面的特征可知A,B,D上底面不可能有兩個,故不是正方體的展開圖,選項(xiàng)C可以拼成一個正方體,故選C.【點(diǎn)睛】本題是對正方形表面展開圖的考查,熟練掌握正方體的表面展開圖是解題的關(guān)鍵.3、C【解析】

解:由題意可知4的算術(shù)平方根是2,4的立方根是<2,8的算術(shù)平方根是,2<<3,8的立方根是2,

故根據(jù)數(shù)軸可知,

故選C4、B【解析】當(dāng)腰長是2cm時,因?yàn)?+2<5,不符合三角形的三邊關(guān)系,排除;當(dāng)腰長是5cm時,因?yàn)?+5>2,符合三角形三邊關(guān)系,此時周長是12cm.故選B.5、A【解析】分析:由方程根的情況,根據(jù)根的判別式可求得c的取值范圍,則可求得答案.詳解:∵關(guān)于x的方程x1+1x+c=0沒有實(shí)數(shù)根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故選A.點(diǎn)睛:本題主要考查了根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關(guān)系是解題的關(guān)鍵.6、B【解析】

根據(jù)的圖象上的三點(diǎn),把三點(diǎn)代入可以得到x1=﹣,x1=,x3=,在根據(jù)a的大小即可解題【詳解】解:∵點(diǎn)A(x1,﹣1)、B(x1,4)、C(x3,5)為反比例函數(shù)圖象上的三點(diǎn),∴x1=﹣,x1=,x3=,∵a<1,∴a﹣1<0,∴x1>x3>x1.故選B.【點(diǎn)睛】此題主要考查一次函數(shù)圖象與系數(shù)的關(guān)系,解題關(guān)鍵在于把三點(diǎn)代入,在根據(jù)a的大小來判斷7、C【解析】試題解析:∵(±2)2=4,∴4的平方根是±2,故選C.考點(diǎn):平方根.8、B【解析】試題分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如圖:設(shè)切點(diǎn)為D,連接CD,∵AB是⊙C的切線,∴CD⊥AB,∵S△ABC=AC×BC=AB×CD,∴AC×BC=AB×CD,即CD===,∴⊙C的半徑為,故選B.考點(diǎn):圓的切線的性質(zhì);勾股定理.9、D【解析】

分兩種情形討論當(dāng)點(diǎn)P順時針旋轉(zhuǎn)時,圖象是③,當(dāng)點(diǎn)P逆時針旋轉(zhuǎn)時,圖象是①,由此即可解決問題.【詳解】解:當(dāng)點(diǎn)P順時針旋轉(zhuǎn)時,圖象是③,當(dāng)點(diǎn)P逆時針旋轉(zhuǎn)時,圖象是①.故選D.10、C【解析】

根據(jù)數(shù)軸上點(diǎn)的位置判斷出a﹣4與a﹣11的正負(fù),原式利用二次根式性質(zhì)及絕對值的代數(shù)意義化簡,去括號合并即可得到結(jié)果.【詳解】解:根據(jù)數(shù)軸上點(diǎn)的位置得:5<a<10,∴a﹣4>0,a﹣11<0,則原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故選:C.【點(diǎn)睛】此題考查了二次根式的性質(zhì)與化簡,以及實(shí)數(shù)與數(shù)軸,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】分析:根據(jù)“向量運(yùn)算”的三角形法則進(jìn)行計算即可.詳解:如下圖所示,由向量運(yùn)算的三角形法則可得:==.故答案為.點(diǎn)睛:理解向量運(yùn)算的三角形法則是正確解答本題的關(guān)鍵.12、3.【解析】試題解析:把(-1,0)代入得:2-3+k-2=0,解得:k=3.故答案為3.13、.【解析】

當(dāng)PC⊥AB時,線段PQ最短;連接CP、CQ,根據(jù)勾股定理知PQ2=CP2﹣CQ2,先求出CP的長,然后由勾股定理即可求得答案.【詳解】連接CP、CQ;如圖所示:∵PQ是⊙C的切線,∴CQ⊥PQ,∠CQP=90°,根據(jù)勾股定理得:PQ2=CP2﹣CQ2,∴當(dāng)PC⊥AB時,線段PQ最短.∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=2,∴CP===,∴PQ==,∴PQ的最小值是.故答案為:.【點(diǎn)睛】本題考查了切線的性質(zhì)以及勾股定理的運(yùn)用;注意掌握輔助線的作法,注意當(dāng)PC⊥AB時,線段PQ最短是關(guān)鍵.14、1.【解析】

直接利用二次根式的性質(zhì)以及結(jié)合數(shù)軸得出a的取值范圍進(jìn)而化簡即可.【詳解】由數(shù)軸可得:0<a<1,則a+=a+=a+(1﹣a)=1.故答案為1.【點(diǎn)睛】本題主要考查了二次根式的性質(zhì)與化簡,正確得出a的取值范圍是解題的關(guān)鍵.15、丙【解析】

先比較平均數(shù)得到乙組和丙組成績較好,然后比較方差得到丙組的狀態(tài)穩(wěn)定,于是可決定選丙組去參賽.【詳解】因?yàn)橐医M、丙組的平均數(shù)比甲組、丁組大,而丙組的方差比乙組的小,所以丙組的成績比較穩(wěn)定,所以丙組的成績較好且狀態(tài)穩(wěn)定,應(yīng)選的組是丙組.故答案為丙.【點(diǎn)睛】本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了平均數(shù)的意義.16、x>1【解析】分析:題目要求kx+b>0,即一次函數(shù)的圖像在x軸上方時,觀察圖象即可得x的取值范圍.詳解:∵kx+b>0,∴一次函數(shù)的圖像在x軸上方時,∴x的取值范圍為:x>1.故答案為x>1.點(diǎn)睛:本題考查了一次函數(shù)與一元一次不等式的關(guān)系,主要考查學(xué)生的觀察視圖能力.17、①②④【解析】分析:∵四邊形ABCD是正方形,∴AB=AD?!摺鰽EF是等邊三角形,∴AE=AF?!咴赗t△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)?!郆E=DF。∵BC=DC,∴BC﹣BE=CD﹣DF?!郈E=CF?!啖僬f法正確?!逤E=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°?!摺螦EF=60°,∴∠AEB=75°?!啖谡f法正確。如圖,連接AC,交EF于G點(diǎn),∴AC⊥EF,且AC平分EF。∵∠CAD≠∠DAF,∴DF≠FG?!郆E+DF≠EF?!啖壅f法錯誤?!逧F=2,∴CE=CF=。設(shè)正方形的邊長為a,在Rt△ADF中,,解得,∴。∴?!啖苷f法正確。綜上所述,正確的序號是①②④。三、解答題(共7小題,滿分69分)18、(1)證明參見解析;(2)半徑長為,=.【解析】

(1)已知點(diǎn)D在圓上,要連半徑證垂直,連結(jié),則,所以,∵,∴.∴,∴∥.由得出,于是得出結(jié)論;(2)由得到,設(shè),則.,,,由,解得值,進(jìn)而求出圓的半徑及AE長.【詳解】解:(1)已知點(diǎn)D在圓上,要連半徑證垂直,如圖2所示,連結(jié),∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切線;(2)在和中,∵,∴.設(shè),則.∴,.∵,∴.∴,解得=,則3x=,AE=6×-=6,∴⊙的半徑長為,=.【點(diǎn)睛】1.圓的切線的判定;2.銳角三角函數(shù)的應(yīng)用.19、2.1.【解析】

據(jù)題意得出tanB=,即可得出tanA,在Rt△ADE中,根據(jù)勾股定理可求得DE,即可得出∠FCE的正切值,再在Rt△CEF中,設(shè)EF=x,即可求出x,從而得出CF=1x的長.【詳解】解:據(jù)題意得tanB=,∵M(jìn)N∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2設(shè)EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面沒有“設(shè)x>0”,則此處應(yīng)“x=±,舍負(fù)”),∴CF=1x=≈2.1,∴該停車庫限高2.1米.【點(diǎn)睛】點(diǎn)評:本題考查了解直角三角形的應(yīng)用,坡面坡角問題和勾股定理,解題的關(guān)鍵是坡度等于坡角的正切值.20、不等式組的解集為,在數(shù)軸上表示見解析.【解析】

先求出不等式組中每一個不等式的解集,再求出它們的公共部分,然后把不等式的解集表示在數(shù)軸上即可.【詳解】由2(x+2)≤3x+3,可得:x≥1,由,可得:x<3,則不等式組的解為:1≤x<3,不等式組的解集在數(shù)軸上表示如圖所示:【點(diǎn)睛】本題考查了一元一次不等式組,把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點(diǎn)把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實(shí)心圓點(diǎn)表示;“<”,“>”要用空心圓點(diǎn)表示.21、(1);(2)P點(diǎn)坐標(biāo)為,;(3)或或或.【解析】

(1)根據(jù)待定系數(shù)法把A、C兩點(diǎn)坐標(biāo)代入可求得二次函數(shù)的解析式;

(2)由拋物線解析式可求得B點(diǎn)坐標(biāo),由B、C坐標(biāo)可求得直線BC解析式,可設(shè)出P點(diǎn)坐標(biāo),用P點(diǎn)坐標(biāo)表示出四邊形ABPC的面積,根據(jù)二次函數(shù)的性質(zhì)可求得其面積的最大值及P點(diǎn)坐標(biāo);

(3)首先設(shè)出Q點(diǎn)的坐標(biāo),則可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三種情況,求解即可.【詳解】解:(1)∵A(-1,0),在上,,解得,∴二次函數(shù)的解析式為;(2)在中,令可得,解得或,,且,∴經(jīng)過、兩點(diǎn)的直線為,設(shè)點(diǎn)的坐標(biāo)為,如圖,過點(diǎn)作軸,垂足為,與直線交于點(diǎn),則,,∴當(dāng)時,四邊形的面積最大,此時P點(diǎn)坐標(biāo)為,∴四邊形的最大面積為;(3),∴對稱軸為,∴可設(shè)點(diǎn)坐標(biāo)為,,,,,,為直角三角形,∴有、和三種情況,①當(dāng)時,則有,即,解得或,此時點(diǎn)坐標(biāo)為或;②當(dāng)時,則有,即,解得,此時點(diǎn)坐標(biāo)為;③當(dāng)時,則有,即,解得,此時點(diǎn)坐標(biāo)為;綜上可知點(diǎn)的坐標(biāo)為或或或.【點(diǎn)睛】本題考查了待定系數(shù)法、三角形的面積、二次函數(shù)的性質(zhì)、勾股定理、方程思想及分類討論思想等知識,注意分類討論思想的應(yīng)用.22、(1)見解析;(2)【解析】

(1)連接OD、CD,如圖,利用圓周角定理得到∠BDC=90°,再判定AC為⊙O的切線,則根據(jù)切線長定理得到FD=FC,然后證明∠3=∠A得到FD=FA,從而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三邊的關(guān)系得到BC=AC=2,再證明△OBD為等邊三角形得到∠BOD=60°,接著根據(jù)切線的性質(zhì)得到OD⊥EF,從而可計算出DE的長,然后根據(jù)扇形的面積公式,利用S陰影部分=S△ODE-S扇形BOD進(jìn)行計算即可.【詳解】(1)證明:連接OD、CD,如圖,∵BC為直徑,∴∠BDC=90°,∵∠ACB=90°,∴AC為⊙O的切線,∵EF為⊙O的切線,∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴FD=FA,∴FC=FA,∴點(diǎn)F是AC中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論