




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列函數(shù)中,二次函數(shù)是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=2.在△ABC中,點D、E分別在AB、AC上,如果AD=2,BD=3,那么由下列條件能夠判定DE∥BC的是()A.= B.= C.= D.=3.下列說法錯誤的是()A.的相反數(shù)是2 B.3的倒數(shù)是C. D.,0,4這三個數(shù)中最小的數(shù)是04.某校舉行運動會,從商場購買一定數(shù)量的筆袋和筆記本作為獎品.若每個筆袋的價格比每個筆記本的價格多3元,且用200元購買筆記本的數(shù)量與用350元購買筆袋的數(shù)量相同.設(shè)每個筆記本的價格為x元,則下列所列方程正確的是()A. B. C. D.5.一組數(shù)據(jù):6,3,4,5,7的平均數(shù)和中位數(shù)分別是()A.5,5 B.5,6 C.6,5 D.6,66.如圖,已知直線PQ⊥MN于點O,點A,B分別在MN,PQ上,OA=1,OB=2,在直線MN或直線PQ上找一點C,使△ABC是等腰三角形,則這樣的C點有()A.3個B.4個C.7個D.8個7.二次函數(shù)y=x2+bx–1的圖象如圖,對稱軸為直線x=1,若關(guān)于x的一元二次方程x2–2x–1–t=0(t為實數(shù))在–1<x<4的范圍內(nèi)有實數(shù)解,則t的取值范圍是A.t≥–2 B.–2≤t<7C.–2≤t<2 D.2<t<78.關(guān)于2、6、1、10、6的這組數(shù)據(jù),下列說法正確的是()A.這組數(shù)據(jù)的眾數(shù)是6 B.這組數(shù)據(jù)的中位數(shù)是1C.這組數(shù)據(jù)的平均數(shù)是6 D.這組數(shù)據(jù)的方差是109.如圖,在中,、分別為、邊上的點,,與相交于點,則下列結(jié)論一定正確的是()A. B.C. D.10.下列運算結(jié)果為正數(shù)的是()A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)11.下面的圖形是軸對稱圖形,又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個12.不等式組的解集為.則的取值范圍為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,將矩形ABCD繞點C沿順時針方向旋轉(zhuǎn)90°到矩形A′B′CD′的位置,AB=2,AD=4,則陰影部分的面積為_____.14.關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是________.15.若m2﹣2m﹣1=0,則代數(shù)式2m2﹣4m+3的值為.16.如圖,已知∠A+∠C=180°,∠APM=118°,則∠CQN=_____°.17.某航空公司規(guī)定,乘客所攜帶行李的重量x(kg)與運費y(元)滿足如圖所示的函數(shù)圖象,那么每位乘客最多可免費攜帶____kg的行李.18.方程3x2﹣5x+2=0的一個根是a,則6a2﹣10a+2=_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,經(jīng)過原點O的拋物線y=ax2+bx(a≠0)與x軸交于另一點A(,0),在第一象限內(nèi)與直線y=x交于點B(2,t).(1)求這條拋物線的表達式;(2)在第四象限內(nèi)的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標(biāo);(3)如圖2,若點M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P的坐標(biāo);若不存在,請說明理由.20.(6分)先化簡,再求值:,其中.21.(6分)(1)問題:如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.(2)探究:如圖2,在四邊形ABCD中,點P為AB上一點,當(dāng)∠DPC=∠A=∠B=θ時,上述結(jié)論是否依然成立.說明理由.(3)應(yīng)用:請利用(1)(2)獲得的經(jīng)驗解決問題:如圖3,在△ABD中,AB=6,AD=BD=1.點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=∠A.設(shè)點P的運動時間為t(秒),當(dāng)DC的長與△ABD底邊上的高相等時,求t的值.22.(8分)解不等式組,并寫出該不等式組的最大整數(shù)解.23.(8分)我市304國道通遼至霍林郭勒段在修建過程中經(jīng)過一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結(jié)果取整數(shù),參考數(shù)據(jù)≈1.732)24.(10分)為節(jié)約用水,某市居民生活用水按階梯式水價計量,水價分為三個階梯,價格表如下表所示:某市自來水銷售價格表類別月用水量(立方米)供水價格(元/立方米)污水處理費(元/立方米)居民生活用水階梯一0~18(含18)1.901.00階梯二18~25(含25)2.85階梯三25以上5.70(注:居民生活用水水價=供水價格+污水處理費)(1)當(dāng)居民月用水量在18立方米及以下時,水價是_____元/立方米.(2)4月份小明家用水量為20立方米,應(yīng)付水費為:18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)預(yù)計6月份小明家的用水量將達到30立方米,請計算小明家6月份的水費.(3)為了節(jié)省開支,小明家決定每月用水的費用不超過家庭收入的1%,已知小明家的平均月收入為7530元,請你為小明家每月用水量提出建議25.(10分)△ABC內(nèi)接于⊙O,AC為⊙O的直徑,∠A=60°,點D在AC上,連接BD作等邊三角形BDE,連接OE.如圖1,求證:OE=AD;如圖2,連接CE,求證:∠OCE=∠ABD;如圖3,在(2)的條件下,延長EO交⊙O于點G,在OG上取點F,使OF=2OE,延長BD到點M使BD=DM,連接MF,若tan∠BMF=,OD=3,求線段CE的長.26.(12分)如圖,AB是⊙O的直徑,BC交⊙O于點D,E是弧的中點,AE與BC交于點F,∠C=2∠EAB.求證:AC是⊙O的切線;已知CD=4,CA=6,求AF的長.27.(12分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個,若從中隨機摸出一個球,這個球是白球的概率為.()請直接寫出袋子中白球的個數(shù).()隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】A.y=-4x+5是一次函數(shù),故此選項錯誤;B.
y=x(2x-3)=2x2-3x,是二次函數(shù),故此選項正確;C.
y=(x+4)2?x2=8x+16,為一次函數(shù),故此選項錯誤;D.
y=是組合函數(shù),故此選項錯誤.故選B.2、D【解析】
根據(jù)平行線分線段成比例定理的逆定理,當(dāng)或時,,然后可對各選項進行判斷.【詳解】解:當(dāng)或時,,
即或.
所以D選項是正確的.【點睛】本題考查了平行線分線段成比例定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例.也考查了平行線分線段成比例定理的逆定理.3、D【解析】試題分析:﹣2的相反數(shù)是2,A正確;3的倒數(shù)是,B正確;(﹣3)﹣(﹣5)=﹣3+5=2,C正確;﹣11,0,4這三個數(shù)中最小的數(shù)是﹣11,D錯誤,故選D.考點:1.相反數(shù);2.倒數(shù);3.有理數(shù)大小比較;4.有理數(shù)的減法.4、B【解析】試題分析:設(shè)每個筆記本的價格為x元,根據(jù)“用200元購買筆記本的數(shù)量與用350元購買筆袋的數(shù)量相同”這一等量關(guān)系列出方程即可.考點:由實際問題抽象出分式方程5、A【解析】試題分析:根據(jù)平均數(shù)的定義列式計算,再根據(jù)找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù)解答.平均數(shù)為:×(6+3+4+1+7)=1,按照從小到大的順序排列為:3,4,1,6,7,所以,中位數(shù)為:1.故選A.考點:中位數(shù);算術(shù)平均數(shù).6、D【解析】試題分析:根據(jù)等腰三角形的判定分類別分別找尋,分AB可能為底,可能是腰進行分析.解:使△ABC是等腰三角形,當(dāng)AB當(dāng)?shù)讜r,則作AB的垂直平分線,交PQ,MN的有兩點,即有兩個三角形.當(dāng)讓AB當(dāng)腰時,則以點A為圓心,AB為半徑畫圓交PQ,MN有三點,所以有三個.當(dāng)以點B為圓心,AB為半徑畫圓,交PQ,MN有三點,所以有三個.所以共8個.故選D.點評:本題考查了等腰三角形的判定;解題的關(guān)鍵是要分情況而定,所以學(xué)生一定要思維嚴(yán)密,不可遺漏.7、B【解析】
利用對稱性方程求出b得到拋物線解析式為y=x2﹣2x﹣1,則頂點坐標(biāo)為(1,﹣2),再計算當(dāng)﹣1<x<4時對應(yīng)的函數(shù)值的范圍為﹣2≤y<7,由于關(guān)于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數(shù))在﹣1<x<4的范圍內(nèi)有實數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點,然后利用函數(shù)圖象可得到t的范圍.【詳解】拋物線的對稱軸為直線x=﹣=1,解得b=﹣2,∴拋物線解析式為y=x2﹣2x﹣1,則頂點坐標(biāo)為(1,﹣2),當(dāng)x=﹣1時,y=x2﹣2x﹣1=2;當(dāng)x=4時,y=x2﹣2x﹣1=7,當(dāng)﹣1<x<4時,﹣2≤y<7,而關(guān)于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數(shù))在﹣1<x<4的范圍內(nèi)有實數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點,∴﹣2≤t<7,故選B.【點睛】本題考查了二次函數(shù)的性質(zhì)、拋物線與x軸的交點、二次函數(shù)與一元二次方程,把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程是解題的關(guān)鍵.8、A【解析】
根據(jù)方差、算術(shù)平均數(shù)、中位數(shù)、眾數(shù)的概念進行分析.【詳解】數(shù)據(jù)由小到大排列為1,2,6,6,10,它的平均數(shù)為(1+2+6+6+10)=5,數(shù)據(jù)的中位數(shù)為6,眾數(shù)為6,數(shù)據(jù)的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故選A.考點:方差;算術(shù)平均數(shù);中位數(shù);眾數(shù).9、A【解析】
根據(jù)平行線分線段成比例定理逐項分析即可.【詳解】A.∵,∴,,∴,故A正確;B.∵,∴,故B不正確;C.∵,∴,故C不正確;D.∵,∴,故D不正確;故選A.【點睛】本題考查了平行線分線段成比例定理,平行線分線段成比例定理指的是兩條直線被一組平行線所截,截得的對應(yīng)線段的長度成比例.推論:平行于三角形一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形的三邊對應(yīng)成比例.10、B【解析】
分別根據(jù)有理數(shù)的加、減、乘、除運算法則計算可得.【詳解】解:A、1+(﹣2)=﹣(2﹣1)=﹣1,結(jié)果為負(fù)數(shù);B、1﹣(﹣2)=1+2=3,結(jié)果為正數(shù);C、1×(﹣2)=﹣1×2=﹣2,結(jié)果為負(fù)數(shù);D、1÷(﹣2)=﹣1÷2=﹣,結(jié)果為負(fù)數(shù);故選B.【點睛】本題主要考查有理數(shù)的混合運算,熟練掌握有理數(shù)的四則運算法則是解題的關(guān)鍵.11、B【解析】
根據(jù)軸對稱圖形和中心對稱圖形的定義對各個圖形進行逐一分析即可.【詳解】解:第一個圖形是軸對稱圖形,但不是中心對稱圖形;第二個圖形是中心對稱圖形,但不是軸對稱圖形;第三個圖形既是軸對稱圖形,又是中心對稱圖形;第四個圖形即是軸對稱圖形,又是中心對稱圖形;∴既是軸對稱圖形,又是中心對稱圖形的有兩個,故選:B.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180°后兩部分重合.12、B【解析】
求出不等式組的解集,根據(jù)已知得出關(guān)于k的不等式,求出不等式的解集即可.【詳解】解:解不等式組,得.∵不等式組的解集為x<2,∴k+1≥2,解得k≥1.故選:B.【點睛】本題考查了解一元一次不等式組的應(yīng)用,解此題的關(guān)鍵是能根據(jù)不等式組的解集和已知得出關(guān)于k的不等式,難度適中.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】試題解析:連接∵四邊形ABCD是矩形,∴CE=BC=4,∴CE=2CD,由勾股定理得:∴陰影部分的面積是S=S扇形CEB′?S△CDE故答案為14、b<9【解析】
由方程有兩個不相等的實數(shù)根結(jié)合根的判別式,可得出,解之即可得出實數(shù)b的取值范圍.【詳解】解:方程有兩個不相等的實數(shù)根,
,
解得:.【點睛】本題考查的知識點是根的判別式,解題關(guān)鍵是牢記“當(dāng)時,方程有兩個不相等的實數(shù)根”.15、1【解析】試題分析:先求出m2﹣2m的值,然后把所求代數(shù)式整理出已知條件的形式并代入進行計算即可得解.解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.故答案為1.考點:代數(shù)式求值.16、1【解析】
先根據(jù)同旁內(nèi)角互補兩直線平行知AB∥CD,據(jù)此依據(jù)平行線性質(zhì)知∠APM=∠CQM=118°,由鄰補角定義可得答案.【詳解】解:∵∠A+∠C=180°,∴AB∥CD,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案為:1.【點睛】本題主要考查平行線的判定與性質(zhì),解題的關(guān)鍵是掌握平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系.平行線的性質(zhì)是由平行關(guān)系來尋找角的數(shù)量關(guān)系.17、2【解析】
設(shè)乘客所攜帶行李的重量x(kg)與運費y(元)之間的函數(shù)關(guān)系式為y=kx+b,由待定系數(shù)法求出其解即可.【詳解】解:設(shè)乘客所攜帶行李的重量x(kg)與運費y(元)之間的函數(shù)關(guān)系式為y=kx+b,由題意,得,解得,,則y=30x-1.
當(dāng)y=0時,
30x-1=0,
解得:x=2.
故答案為:2.【點睛】本題考查了運用待定系數(shù)法求一次函數(shù)的解析式的運用,由函數(shù)值求自變量的值的運用,解答時求出函數(shù)的解析式是關(guān)鍵.18、-1【解析】
根據(jù)一元二次方程的解的定義,將x=a代入方程3x1-5x+1=0,列出關(guān)于a的一元二次方程,通過變形求得3a1-5a的值后,將其整體代入所求的代數(shù)式并求值即可.【詳解】解:∵方程3x1-5x+1=0的一個根是a,∴3a1-5a+1=0,∴3a1-5a=-1,∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.故答案是:-1.【點睛】此題主要考查了方程解的定義.此類題型的特點是,利用方程解的定義找到相等關(guān)系,再把所求的代數(shù)式化簡后整理出所找到的相等關(guān)系的形式,再把此相等關(guān)系整體代入所求代數(shù)式,即可求出代數(shù)式的值.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】
(1)由直線解析式可求得B點坐標(biāo),由A、B坐標(biāo),利用待定系數(shù)法可求得拋物線的表達式;(2)過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,可設(shè)出C點坐標(biāo),利用C點坐標(biāo)可表示出CD的長,從而可表示出△BOC的面積,由條件可得到關(guān)于C點坐標(biāo)的方程,可求得C點坐標(biāo);(3)設(shè)MB交y軸于點N,則可證得△ABO≌△NBO,可求得N點坐標(biāo),可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點坐標(biāo),過M作MG⊥y軸于點G,由B、C的坐標(biāo)可求得OB和OC的長,由相似三角形的性質(zhì)可求得的值,當(dāng)點P在第一象限內(nèi)時,過P作PH⊥x軸于點H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點坐標(biāo);當(dāng)P點在第三象限時,同理可求得P點坐標(biāo).【詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點坐標(biāo)代入拋物線解析式可得:,解得:,∴拋物線解析式為;(2)如圖1,過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,∵點C是拋物線上第四象限的點,∴可設(shè)C(t,2t2﹣3t),則E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面積為2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.設(shè)MB交y軸于點N,如圖2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可設(shè)直線BN解析式為y=kx+,把B點坐標(biāo)代入可得2=2k+,解得k=,∴直線BN的解析式為,聯(lián)立直線BN和拋物線解析式可得:,解得:或,∴M(,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=,OC=,∵△POC∽△MOB,∴,∠POC=∠BOM,當(dāng)點P在第一象限時,如圖3,過M作MG⊥y軸于點G,過P作PH⊥x軸于點H,如圖3∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴∵M(,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);當(dāng)點P在第三象限時,如圖4,過M作MG⊥y軸于點G,過P作PH⊥y軸于點H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);綜上可知:存在滿足條件的點P,其坐標(biāo)為(,)或(﹣,).【點睛】本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、三角形的面積、二次函數(shù)的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、方程思想及分類討論思想等知識.在(1)中注意待定系數(shù)法的應(yīng)用,在(2)中用C點坐標(biāo)表示出△BOC的面積是解題的關(guān)鍵,在(3)中確定出點P的位置,構(gòu)造相似三角形是解題的關(guān)鍵,注意分兩種情況.20、,【解析】
先根據(jù)完全平方公式進行約分化簡,再代入求值即可.【詳解】原式=-==,將a=+1代入得,原式===,故答案為.【點睛】本題主要考查了求代數(shù)式的值、分式的運算,解本題的要點在于正確化簡,從而得到答案.21、(2)證明見解析;(2)結(jié)論成立,理由見解析;(3)2秒或2秒.【解析】
(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運用相似三角形的性質(zhì)即可解決問題;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運用相似三角形的性質(zhì)即可解決問題;(3)過點D作DE⊥AB于點E,根據(jù)等腰三角形的性質(zhì)可得AE=BE=3,根據(jù)勾股定理可得DE=4,由題可得DC=DE=4,則有BC=2-4=2.易證∠DPC=∠A=∠B.根據(jù)ADBC=APBP,就可求出t的值.【詳解】解:(2)如圖2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴,∴ADBC=APBP;(2)結(jié)論ADBC=APBP仍成立;證明:如圖2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴ADBC=APBP;(3)如下圖,過點D作DE⊥AB于點E,∵AD=BD=2,AB=6,∴AE=BE=3∴DE==4,∵以D為圓心,以DC為半徑的圓與AB相切,∴DC=DE=4,∴BC=2-4=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(2)(2)的經(jīng)驗得AD?BC=AP?BP,又∵AP=t,BP=6-t,∴t(6-t)=2×2,∴t=2或t=2,∴t的值為2秒或2秒.【點睛】本題考查圓的綜合題.22、﹣2,﹣1,0【解析】分析:先解不等式①,去括號,移項,系數(shù)化為1,再解不等式②,取分母,移項,然后找出不等式組的解集.本題解析:,解不等式①得,x≥?2,解不等式②得,x<1,∴不等式組的解集為?2≤x<1.∴不等式組的最大整數(shù)解為x=0,23、隧道最短為1093米.【解析】【分析】作BD⊥AC于D,利用直角三角形的性質(zhì)和三角函數(shù)解答即可.【詳解】如圖,作BD⊥AC于D,由題意可得:BD=1400﹣1000=400(米),∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵tan30°=,即,∴AD=400(米),在Rt△BCD中,∵tan45°=,即,∴CD=400(米),∴AC=AD+CD=400+400≈1092.8≈1093(米),答:隧道最短為1093米.【點睛】本題考查了解直角三角形的應(yīng)用,正確添加輔助線構(gòu)建直角三角形是解題的關(guān)鍵.24、(1)1.90;(2)112.65元;(3)當(dāng)小明家每月的用水量不要超過24立方米時,水費就不會超過他們家庭總收入的1%.【解析】試題分析:(1)由表中數(shù)據(jù)可知,當(dāng)用水量在18立方米及以下時,水價為1.9元/立方米;(2)由題意可知小明家6月份的水費是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由已知條件可知,用水量為18立方米時,應(yīng)交水費52.2元,當(dāng)用水量為25立方米時,應(yīng)交水費79.15元,而小明家計劃的水費不超過75.3元,由此可知他們家的用水量不會超過25立方米,設(shè)他們家的用水量為x立方米,則由題意可得:18×(1.9+1)+(x-18)×(2.85+1)75.3,解得:x24,即小明家每月的用水量不要超過24立方米.試題解析:(1)由表中數(shù)據(jù)可知,當(dāng)用水量在18立方米及以下時,水價為1.9元/立方米;(2)由題意可得:小明家6月份的水費是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由題意可知,當(dāng)用水量為18立方米時,應(yīng)交水費52.2元,當(dāng)用水量為25立方米時,應(yīng)交水費79.15元,而小明家計劃的水費不超過75.3元,由此可知他們家的用水量不超過18立方米,而不足25立方米,設(shè)他們家的用水量為x立方米,則由題意可得:18×(1.9+1)+(x-18)×(2.85+1)75.3,解得:x24,∴當(dāng)小明家每月的用水量不要超過24立方米時,水費就不會超過他們家庭總收入的1%.25、(1)證明見解析;(2)證明見解析;(3)CE=.【解析】
(1)連接OB,證明△ABD≌△OBE,即可證出OE=AD.(2)連接OB,證明△OCE≌△OBE,則∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,則∠OCE=∠ABD.(3)過點M作AB的平行線交AC于點Q,過點D作DN垂直EG于點N,則△ADB≌△MQD,四邊形MQOG為平行四邊形,∠DMF=∠EDN,再結(jié)合特殊角度和已知的線段長度求出CE的長度即可.【詳解】解:(1)如圖1所示,連接OB,∵∠A=60°,OA=OB,∴△AOB為等邊三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE為等邊三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)文化活動組織策劃培訓(xùn)
- 探索電影中的教育意義
- 小淘氣的安全教育
- 成本管理部工作總結(jié)
- 大學(xué)物理學(xué) 第一卷 經(jīng)典物理基礎(chǔ) 第6版 課件 11 光的偏振
- 施工合同的法律責(zé)任協(xié)議
- 商品質(zhì)量測試協(xié)議(2篇)
- 《有意味的形》教學(xué)課件-2024-2025學(xué)年湘美版(2024)初中美術(shù)七年級下冊
- 控?zé)熃逃黝}班會
- 手工焊錫技能培訓(xùn)
- 2024年度網(wǎng)絡(luò)安全技術(shù)知識產(chǎn)權(quán)保密協(xié)議合同3篇
- 急性早幼粒細(xì)胞白血病M3的護理
- 《《城市社會學(xué)-芝加哥學(xué)派城市研究文集》》
- DB11T 1200-2015 超長大體積混凝土結(jié)構(gòu)跳倉法技術(shù)規(guī)程
- 【北京】八上地理知識點總結(jié)
- 燃料電池完整版本
- 人教鄂教版六年級下冊科學(xué)全冊知識點
- 2025屆高考語文一輪復(fù)習(xí):小說標(biāo)題的含意及作用+課件
- 《數(shù)字經(jīng)濟概論:理論、實踐與戰(zhàn)略》札記
- 2024年貴州省黔西南州中考?xì)v史真題【附參考答案】
- DB11T 774-2010 新建物業(yè)項目交接查驗標(biāo)準(zhǔn)
評論
0/150
提交評論