版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖是由若干個大小相同的小正方體堆砌而成的幾何體,那么其三種視圖中面積最小的是()A.主視圖 B.俯視圖 C.左視圖 D.一樣大2.計算的結果是().A. B. C. D.3.下列計算正確的是A. B. C. D.4.北京故宮的占地面積達到720000平方米,這個數(shù)據(jù)用科學記數(shù)法表示為()A.0.72×106平方米 B.7.2×106平方米C.72×104平方米 D.7.2×105平方米5.如圖1,在△ABC中,AB=BC,AC=m,D,E分別是AB,BC邊的中點,點P為AC邊上的一個動點,連接PD,PB,PE.設AP=x,圖1中某條線段長為y,若表示y與x的函數(shù)關系的圖象大致如圖2所示,則這條線段可能是()A.PD B.PB C.PE D.PC6.如圖,一個鐵環(huán)上掛著6個分別編有號碼1,2,3,4,5,6的鐵片.如果把其中編號為2,4的鐵片取下來,再先后把它們穿回到鐵環(huán)上的仼意位置,則鐵環(huán)上的鐵片(無論沿鐵環(huán)如何滑動)不可能排成的情形是()A. B.C. D.7.如圖所示,在平面直角坐標系中,拋物線y=-x2+2x的頂點為A點,且與x軸的正半軸交于點B,P點為該拋物線對稱軸上一點,則OP+AP的最小值為().A.3 B. C. D.8.如圖,在菱形ABCD中,AB=5,∠BCD=120°,則△ABC的周長等于()A.20 B.15 C.10 D.59.如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結論:①AQ⊥DP;②OA2=OE?OP;③S△AOD=S四邊形OECF;④當BP=1時,tan∠OAE=,其中正確結論的個數(shù)是(
)A.1 B.2 C.3 D.410.如圖所示的幾何體,它的左視圖是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,每個小正方形的邊長為1,A、B、C是小正方形的頂點,則∠ABC的正弦值為__.12.已知直線m∥n,將一塊含有30°角的直角三角板ABC按如圖方式放置,其中A、B兩點分別落在直線m、n上,若∠1=20°,則∠2=_____度.13.如果x3nym+4與﹣3x6y2n是同類項,那么mn的值為_____.14.因式分解:9x﹣x2=_____.15.當a,b互為相反數(shù),則代數(shù)式a2+ab﹣2的值為_____.16.|-3|=_________;17.如圖,在每個小正方形邊長為的網(wǎng)格中,的頂點,,均在格點上,為邊上的一點.線段的值為______________;在如圖所示的網(wǎng)格中,是的角平分線,在上求一點,使的值最小,請用無刻度的直尺,畫出和點,并簡要說明和點的位置是如何找到的(不要求證明)___________.三、解答題(共7小題,滿分69分)18.(10分)某商場購進一批30瓦的LED燈泡和普通白熾燈泡進行銷售,其進價與標價如下表:LED燈泡普通白熾燈泡進價(元)4525標價(元)6030(1)該商場購進了LED燈泡與普通白熾燈泡共300個,LED燈泡按標價進行銷售,而普通白熾燈泡打九折銷售,當銷售完這批燈泡后可獲利3200元,求該商場購進LED燈泡與普通白熾燈泡的數(shù)量分別為多少個?(2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場計劃再次購進這兩種燈泡120個,在不打折的情況下,請問如何進貨,銷售完這批燈泡時獲利最多且不超過進貨價的30%,并求出此時這批燈泡的總利潤為多少元?19.(5分)為上標保障我國海外維和部隊官兵的生活,現(xiàn)需通過A港口、B港口分別運送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運送物資到港口的費用(元/噸)如表所示:設從甲倉庫運送到A港口的物資為x噸,求總運費y(元)與x(噸)之間的函數(shù)關系式,并寫出x的取值范圍;求出最低費用,并說明費用最低時的調(diào)配方案.20.(8分)小昆和小明玩摸牌游戲,游戲規(guī)則如下:有3張背面完全相同,牌面標有數(shù)字1、2、3的紙牌,將紙牌洗勻后背面朝上放在桌面上,隨機抽出一張,記下牌面數(shù)字,放回后洗勻再隨機抽出一張.請用畫樹形圖或列表的方法(只選其中一種),表示出兩次抽出的紙牌數(shù)字可能出現(xiàn)的所有結果;若規(guī)定:兩次抽出的紙牌數(shù)字之和為奇數(shù),則小昆獲勝,兩次抽出的紙牌數(shù)字之和為偶數(shù),則小明獲勝,這個游戲公平嗎?為什么?21.(10分)在△ABC中,∠ACB=45°.點D(與點B、C不重合)為射線BC上一動點,連接AD,以AD為一邊且在AD的右側作正方形ADEF.(1)如果AB=AC.如圖①,且點D在線段BC上運動.試判斷線段CF與BD之間的位置關系,并證明你的結論.(2)如果AB≠AC,如圖②,且點D在線段BC上運動.(1)中結論是否成立,為什么?(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設AC=4,BC=3,CD=x,求線段CP的長.(用含x的式子表示)22.(10分)甲、乙兩公司各為“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人數(shù)是甲公司人數(shù)的,問甲、乙兩公司人均捐款各多少元?23.(12分)先化簡:()÷,再從﹣2,﹣1,0,1這四個數(shù)中選擇一個合適的數(shù)代入求值.24.(14分)在△ABC中,AB=AC,∠BAC=α,點P是△ABC內(nèi)一點,且∠PAC+∠PCA=,連接PB,試探究PA、PB、PC滿足的等量關系.(1)當α=60°時,將△ABP繞點A逆時針旋轉(zhuǎn)60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為度,進而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關系為;(2)如圖2,當α=120°時,參考(1)中的方法,探究PA、PB、PC滿足的等量關系,并給出證明;(3)PA、PB、PC滿足的等量關系為.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】如圖,該幾何體主視圖是由5個小正方形組成,左視圖是由3個小正方形組成,俯視圖是由5個小正方形組成,故三種視圖面積最小的是左視圖,故選C.2、D【解析】
根據(jù)同底數(shù)冪的乘除法運算進行計算.【詳解】3x2y2x3y2÷xy3=6x5y4÷xy3=6x4y.故答案選D.【點睛】本題主要考查同底數(shù)冪的乘除運算,解題的關鍵是知道:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.3、C【解析】
根據(jù)同類項的定義、同底數(shù)冪的除法、單項式乘單項式法則和積的乘方逐一判斷即可.【詳解】、與不是同類項,不能合并,此選項錯誤;、,此選項錯誤;、,此選項正確;、,此選項錯誤.故選:.【點睛】此題考查的是整式的運算,掌握同類項的定義、同底數(shù)冪的除法、單項式乘單項式法則和積的乘方是解決此題的關鍵.4、D【解析】試題分析:把一個數(shù)記成a×10n(1≤a<10,n整數(shù)位數(shù)少1)的形式,叫做科學記數(shù)法.∴此題可記為1.2×105平方米.考點:科學記數(shù)法5、C【解析】觀察可得,點P在線段AC上由A到C的運動中,線段PE逐漸變短,當EP⊥AC時,PE最短,過垂直這個點后,PE又逐漸變長,當AP=m時,點P停止運動,符合圖像的只有線段PE,故選C.點睛:本題考查了動點問題的函數(shù)圖象,對于此類問題來說是典型的數(shù)形結合,圖象應用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.6、D【解析】
摘掉鐵片2,4后,鐵片1,1,5,6在鐵環(huán)上按逆時針排列,無論將鐵片2,4穿回哪里,鐵片1,1,5,6在鐵環(huán)上的順序不變,觀察四個選擇即可得出結論.【詳解】解:摘掉鐵片2,4后,鐵片1,1,5,6在鐵環(huán)上按逆時針排列,∵選項A,B,C中鐵片順序為1,1,5,6,選項D中鐵片順序為1,5,6,1.故選D.【點睛】本題考查了規(guī)律型:圖形的變化類,找準鐵片1,1,5,6在鐵環(huán)上的順序不變是解題的關鍵.7、A【解析】
連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點B,再利用配方法得到點A,得到OA的長度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線的性質(zhì)得到PO=PB,再根據(jù)兩點之間線段最短求解.【詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當y=0時-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因為AP垂直平分OB,所以PO=PB,所以OP+AP=PB+PH,所以當H,P,B共線時,PB+PH最短,而BC=AB=3,所以最小值為3.故選A.【點睛】本題考查的是二次函數(shù)的綜合運用,熟練掌握二次函數(shù)的性質(zhì)和最短途徑的解決方法是解題的關鍵.8、B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等邊三角形.∴△ABC的周長=3AB=1.故選B9、C【解析】∵四邊形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正確;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD?OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE?OP;故②錯誤;在△CQF與△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF與△DCE中,,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四邊形OECF;故③正確;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正確,故選C.點睛:本題考查了相似三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),三角函數(shù)的定義,熟練掌握全等三角形的判定和性質(zhì)是解題的關鍵.10、A【解析】
從左面觀察幾何體,能夠看到的線用實線,看不到的線用虛線.【詳解】從左邊看是等寬的上下兩個矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,
故選:A.【點睛】本題主要考查的是幾何體的三視圖,熟練掌握三視圖的畫法是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
首先利用勾股定理計算出AB2,BC2,AC2,再根據(jù)勾股定理逆定理可證明∠BCA=90°,然后得到∠ABC的度數(shù),再利用特殊角的三角函數(shù)可得∠ABC的正弦值.【詳解】解:連接ACAB2=32+12=10,BC2=22+12=5,AC2=22+12=5,∴AC=CB,BC2+AC2=AB2,∴∠BCA=90°,∴∠ABC=45°,∴∠ABC的正弦值為.故答案為:.【點睛】此題主要考查了銳角三角函數(shù),以及勾股定理逆定理,關鍵是掌握特殊角的三角函數(shù).12、1【解析】
根據(jù)平行線的性質(zhì)即可得到∠2=∠ABC+∠1,據(jù)此進行計算即可.【詳解】解:∵直線m∥n,∴∠2=∠ABC+∠1=30°+20°=1°,故答案為:1.【點睛】本題考查了平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解題的關鍵.13、0【解析】根據(jù)同類項的特點,可知3n=6,解得n=2,m+4=2n,解得m=0,所以mn=0.故答案為0點睛:此題主要考查了同類項,解題關鍵是會判斷同類項,注意:同類項中含有相同的字母,相同字母的指數(shù)相同.14、x(9﹣x)【解析】試題解析:故答案為點睛:常見的因式分解的方法:提取公因式法,公式法,十字相乘法.15、﹣1.【解析】分析:由已知易得:a+b=0,再把代數(shù)式a1+ab-1化為為a(a+b)-1即可求得其值了.詳解:∵a與b互為相反數(shù),∴a+b=0,∴a1+ab-1=a(a+b)-1=0-1=-1.故答案為:-1.點睛:知道“互為相反數(shù)的兩數(shù)的和為0”及“能夠把a1+ab-1化為為a(a+b)-1”是正確解答本題的關鍵.16、1【解析】分析:根據(jù)負數(shù)的絕對值等于這個數(shù)的相反數(shù),即可得出答案.解答:解:|-1|=1.故答案為1.17、(Ⅰ)(Ⅱ)如圖,取格點、,連接與交于點,連接與交于點.【解析】
(Ⅰ)根據(jù)勾股定理進行計算即可.(Ⅱ)根據(jù)菱形的每一條對角線平分每一組對角,構造邊長為1的菱形ABEC,連接AE交BC于M,即可得出是的角平分線,再取點F使AF=1,則根據(jù)等腰三角形的性質(zhì)得出點C與F關于AM對稱,連接DF交AM于點P,此時的值最?。驹斀狻浚á瘢└鶕?jù)勾股定理得AC=;故答案為:1.(Ⅱ)如圖,如圖,取格點、,連接與交于點,連接與交于點,則點P即為所求.說明:構造邊長為1的菱形ABEC,連接AE交BC于M,則AM即為所求的的角平分線,在AB上取點F,使AF=AC=1,則AM垂直平分CF,點C與F關于AM對稱,連接DF交AM于點P,則點P即為所求.【點睛】本題考查作圖-應用與設計,涉及勾股定理、菱形的判定和性質(zhì)、幾何變換軸對稱—最短距離等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用數(shù)形結合的思想解決問題.三、解答題(共7小題,滿分69分)18、(1)LED燈泡與普通白熾燈泡的數(shù)量分別為200個和100個;(2)1350元.【解析】
1)設該商場購進LED燈泡x個,普通白熾燈泡的數(shù)量為y個,利用該商場購進了LED燈泡與普通白熾燈泡共300個和銷售完這批燈泡后可以獲利3200元列方程組,然后解方程組即可;
(2)設該商場購進LED燈泡a個,則購進普通白熾燈泡(120-a)個,這批燈泡的總利潤為W元,利用利潤的意義得到W=(60-45)a+(30-25)(120-a)=10a+1,再根據(jù)銷售完這批燈泡時獲利最多且不超過進貨價的30%可確定a的范圍,然后根據(jù)一次函數(shù)的性質(zhì)解決問題.【詳解】(1)設該商場購進LED燈泡x個,普通白熾燈泡的數(shù)量為y個.根據(jù)題意,得解得答:該商場購進LED燈泡與普通白熾燈泡的數(shù)量分別為200個和100個.(2)設該商場再次購進LED燈泡a個,這批燈泡的總利潤為W元.則購進普通白熾燈泡(120﹣a)個.根據(jù)題意得W=(60﹣45)a+(30﹣25)(120﹣a)=10a+1.∵10a+1≤[45a+25(120﹣a)]×30%,解得a≤75,∵k=10>0,∴W隨a的增大而增大,∴a=75時,W最大,最大值為1350,此時購進普通白熾燈泡(120﹣75)=45個.答:該商場再次購進LED燈泡75個,購進普通白熾燈泡45個,這批燈泡的總利潤為1350元.【點睛】本題考查了二元一次方程組和一次函數(shù)的應用,根據(jù)實際問題找到等量關系列方程組和建立一次函數(shù)模型,利用一次函數(shù)的性質(zhì)和自變量的取值范圍解決最值問題是解題的關鍵.19、(1)y=﹣8x+2560(30≤x≤1);(2)把甲倉庫的全部運往A港口,再從乙倉庫運20噸往A港口,乙倉庫的余下的全部運往B港口.【解析】試題分析:(1)設從甲倉庫運x噸往A港口,根據(jù)題意得從甲倉庫運往B港口的有(1﹣x)噸,從乙倉庫運往A港口的有噸,運往B港口的有50﹣(1﹣x)=(x﹣30)噸,再由等量關系:總運費=甲倉庫運往A港口的費用+甲倉庫運往B港口的費用+乙倉庫運往A港口的費用+乙倉庫運往B港口的費用列式并化簡,即可得總運費y(元)與x(噸)之間的函數(shù)關系式;由題意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因為所得的函數(shù)為一次函數(shù),由增減性可知:y隨x增大而減少,則當x=1時,y最小,并求出最小值,寫出運輸方案.試題解析:(1)設從甲倉庫運x噸往A港口,則從甲倉庫運往B港口的有(1﹣x)噸,從乙倉庫運往A港口的有噸,運往B港口的有50﹣(1﹣x)=(x﹣30)噸,所以y=14x+20+10(1﹣x)+8(x﹣30)=﹣8x+2560,x的取值范圍是30≤x≤1.(2)由(1)得y=﹣8x+2560y隨x增大而減少,所以當x=1時總運費最小,當x=1時,y=﹣8×1+2560=1920,此時方案為:把甲倉庫的全部運往A港口,再從乙倉庫運20噸往A港口,乙倉庫的余下的全部運往B港口.考點:一次函數(shù)的應用.20、(1)結果見解析;(2)不公平,理由見解析.【解析】判斷游戲是否公平,即是看雙方取勝的概率是否相同,若相同,則公平,不相同則不公平.21、(1)CF與BD位置關系是垂直,理由見解析;(2)AB≠AC時,CF⊥BD的結論成立,理由見解析;(3)見解析【解析】
(1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可證△DAB≌△FAC(SAS),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(2)過點A作AG⊥AC交BC于點G,可得出AC=AG,易證:△GAD≌△CAF,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設AC=1,BC=3,CD=x,求線段CP的長.考慮點D的位置,分兩種情況去解答.①點D在線段BC上運動,已知∠BCA=15°,可求出AQ=CQ=1.即DQ=1-x,易證△AQD∽△DCP,再根據(jù)相似三角形的性質(zhì)求解問題.②點D在線段BC延長線上運動時,由∠BCA=15°,可求出AQ=CQ=1,則DQ=1+x.過A作AQ⊥BC交CB延長線于點Q,則△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得再根據(jù)相似三角形的性質(zhì)求解問題.【詳解】(1)CF與BD位置關系是垂直;證明如下:∵AB=AC,∠ACB=15°,∴∠ABC=15°.由正方形ADEF得AD=AF,∵∠DAF=∠BAC=90°,∴∠DAB=∠FAC,∴△DAB≌△FAC(SAS),∴∠ACF=∠ABD.∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)AB≠AC時,CF⊥BD的結論成立.理由是:過點A作GA⊥AC交BC于點G,∵∠ACB=15°,∴∠AGD=15°,∴AC=AG,同理可證:△GAD≌△CAF∴∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°,即CF⊥BD.(3)過點A作AQ⊥BC交CB的延長線于點Q,①點D在線段BC上運動時,∵∠BCA=15°,可求出AQ=CQ=1.∴DQ=1﹣x,△AQD∽△DCP,∴,∴,∴.②點D在線段BC延長線上運動時,∵∠BCA=15°,∴AQ=CQ=1,∴DQ=1+x.過A作AQ⊥BC,∴∠Q=∠FAD=90°,∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,∴∠ADQ=∠AFC′,則△AQD∽△AC′F.∴CF⊥BD,∴△AQD∽△DCP,∴,∴,∴.【點睛】綜合性題型,解題關鍵是靈活運用所學全等、相似、正方形等知識點.22、甲、乙兩公司人均捐款分別為80元、100元.【解析】試題分析:本題考察的是分式的應用題,設甲公司人均捐款x元,根據(jù)題意列出方程即可.試題解析:設甲公司人均捐款x元解得:經(jīng)檢驗,為原方程的根,80+20=100答:甲、乙兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 27728.3-2024濕巾及類似用途產(chǎn)品第3部分:消毒濕巾專用要求
- 大學生兼職勞動合同書2
- 聯(lián)機手環(huán)測量儀器項目運營指導方案
- 電動鋸商業(yè)機會挖掘與戰(zhàn)略布局策略研究報告
- 沖床金屬加工用產(chǎn)品供應鏈分析
- 電動指甲刀商業(yè)機會挖掘與戰(zhàn)略布局策略研究報告
- 眉刷商業(yè)機會挖掘與戰(zhàn)略布局策略研究報告
- 自動電話交換機商業(yè)機會挖掘與戰(zhàn)略布局策略研究報告
- 粉餅盒用粉芯項目運營指導方案
- 空手道用護腿板項目運營指導方案
- 國企工期標準化手冊!各業(yè)態(tài)建筑工期要求詳解
- 卿平海-以校為本的學校發(fā)展規(guī)劃課件
- 示兒優(yōu)秀課件
- (質(zhì)量科)廢棄物處理記錄
- 2022四年級數(shù)學上冊1大數(shù)的認識第13課時整理和復習教學設計新人教版
- 車床經(jīng)典知識幻燈片課件
- 土建歸檔資料全套表格
- 園區(qū)現(xiàn)行表格匯總移交單
- 湘教版九年級上期數(shù)學期中復習 完整版PPT
- 抖音小店客服績效考核指標表
- 《小鯉魚跳龍門》評課稿
評論
0/150
提交評論