版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.2018年10月24日港珠澳大橋全線通車,港珠澳大橋東起香港國際機場附近的香港口岸人工島,向西橫跨伶仃洋海域后連接珠海和澳門人工島,止于珠海洪灣,它是世界上最長的跨海大橋,被稱為“新世界七大奇跡之一”,港珠澳大橋總長度55000米,則數(shù)據(jù)55000用科學記數(shù)法表示為()A.55×105 B.5.5×104 C.0.55×105 D.5.5×1052.一個正方形花壇的面積為7m2,其邊長為am,則a的取值范圍為()A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<43.一組數(shù)據(jù):3,2,5,3,7,5,x,它們的眾數(shù)為5,則這組數(shù)據(jù)的中位數(shù)是()A.2 B.3 C.5 D.74.-5的倒數(shù)是A. B.5 C.- D.-55.﹣18的倒數(shù)是()A.18 B.﹣18 C.- D.6.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧交AB于M、AC于N,再分別以M、N為圓心,大于12MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于D①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△ACD:S△ACB=1:1.其中正確的有()A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④7.若函數(shù)y=kx﹣b的圖象如圖所示,則關于x的不等式k(x﹣3)﹣b>0的解集為()A.x<2 B.x>2 C.x<5 D.x>58.下列計算正確的是()A.a(chǎn)+a=2a B.b3?b3=2b3 C.a(chǎn)3÷a=a3 D.(a5)2=a79.下列實數(shù)中是無理數(shù)的是()A. B.π C. D.10.若式子在實數(shù)范圍內(nèi)有意義,則x的取值范圍是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于點D,點P在線段DB上,若AP2-PB2=48,則△PCD的面積為____.12.將一張矩形紙片折疊成如圖所示的圖形,若AB=6cm,則AC=cm.13.在數(shù)學課上,老師提出如下問題:尺規(guī)作圖:確定圖1中所在圓的圓心.已知:.求作:所在圓的圓心.曈曈的作法如下:如圖2,(1)在上任意取一點,分別連接,;(2)分別作弦,的垂直平分線,兩條垂直平分線交于點.點就是所在圓的圓心.老師說:“曈曈的作法正確.”請你回答:曈曈的作圖依據(jù)是_____.14.計算﹣的結(jié)果為_____.15.函數(shù)y=2xx+5的自變量x16.請從以下兩個小題中任選一個作答,若多選,則按第一題計分.A.正多邊形的一個外角是40°,則這個正多邊形的邊數(shù)是____________.B.運用科學計算器比較大?。篲_______sin37.5°.17.如圖,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分線MN交AC于點D,則∠A的度數(shù)是.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:,其中,a、b滿足.19.(5分)如圖,在矩形紙片ABCD中,AB=6,BC=1.把△BCD沿對角線BD折疊,使點C落在C′處,BC′交AD于點G;E、F分別是C′D和BD上的點,線段EF交AD于點H,把△FDE沿EF折疊,使點D落在D′處,點D′恰好與點A重合.(1)求證:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的長.20.(8分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=m求反比例函數(shù)和一次函數(shù)的解析式;直接寫出當x>0時,kx+b<m21.(10分)如圖,已知,,.求證:.22.(10分)兩個全等的等腰直角三角形按如圖方式放置在平面直角坐標系中,OA在x軸上,已知∠COD=∠OAB=90°,OC=,反比例函數(shù)y=的圖象經(jīng)過點B.求k的值.把△OCD沿射線OB移動,當點D落在y=圖象上時,求點D經(jīng)過的路徑長.23.(12分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.(1)求一次函數(shù)y=kx+b和y=的表達式;(2)已知點C在x軸上,且△ABC的面積是8,求此時點C的坐標;(3)反比例函數(shù)y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個單位長度,得曲線C2,則C1平移至C2處所掃過的面積是_________.(直接寫出答案)24.(14分)先化簡,再求值:3a(a1+1a+1)﹣1(a+1)1,其中a=1.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將度55000用科學記數(shù)法表示為5.5×1.故選B.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.2、C【解析】
先根據(jù)正方形的面積公式求邊長,再根據(jù)無理數(shù)的估算方法求取值范圍.【詳解】解:∵一個正方形花壇的面積為,其邊長為,則a的取值范圍為:.故選:C.【點睛】此題重點考查學生對無理數(shù)的理解,會估算無理數(shù)的大小是解題的關鍵.3、C【解析】分析:眾數(shù)是指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù),一組數(shù)據(jù)可以有多個眾數(shù),也可以沒有眾數(shù);中位數(shù)是指將數(shù)據(jù)按大小順序排列起來形成一個數(shù)列,居于數(shù)列中間位置的那個數(shù)據(jù).根據(jù)定義即可求出答案.詳解:∵眾數(shù)為5,∴x=5,∴這組數(shù)據(jù)為:2,3,3,5,5,5,7,∴中位數(shù)為5,故選C.點睛:本題主要考查的是眾數(shù)和中位數(shù)的定義,屬于基礎題型.理解他們的定義是解題的關鍵.4、C【解析】
若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).【詳解】解:5的倒數(shù)是.故選C.5、C【解析】
根據(jù)乘積為1的兩個數(shù)互為倒數(shù),可得一個數(shù)的倒數(shù).【詳解】∵-18=1,∴﹣18的倒數(shù)是,故選C.【點睛】本題考查了倒數(shù),分子分母交換位置是求一個數(shù)的倒數(shù)的關鍵.6、D【解析】
①根據(jù)作圖過程可判定AD是∠BAC的角平分線;②利用角平分線的定義可推知∠CAD=10°,則由直角三角形的性質(zhì)來求∠ADC的度數(shù);③利用等角對等邊可以證得△ADB是等腰三角形,由等腰三角形的“三合一”性質(zhì)可以證明點D在AB的中垂線上;④利用10°角所對的直角邊是斜邊的一半,三角形的面積計算公式來求兩個三角形面積之比.【詳解】①根據(jù)作圖過程可知AD是∠BAC的角平分線,①正確;②如圖,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分線,∴∠1=∠2=12∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正確;③∵∠1=∠B=10°,∴AD=BD,∴點D在AB的中垂線上,③正確;④如圖,∵在直角△ACD中,∠2=10°,∴CD=12AD,∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC?CD=14AC?AD.∴S△ABC=12AC?BC=12AC?32AD=3【點睛】本題主要考查尺規(guī)作角平分線、角平分線的性質(zhì)定理、三角形的外角以及等腰三角形的性質(zhì),熟練掌握有關知識點是解答的關鍵.7、C【解析】
根據(jù)函數(shù)圖象知:一次函數(shù)過點(2,0);將此點坐標代入一次函數(shù)的解析式中,可求出k、b的關系式;然后將k、b的關系式代入k(x﹣3)﹣b>0中進行求解即可.【詳解】解:∵一次函數(shù)y=kx﹣b經(jīng)過點(2,0),∴2k﹣b=0,b=2k.函數(shù)值y隨x的增大而減小,則k<0;解關于k(x﹣3)﹣b>0,移項得:kx>3k+b,即kx>1k;兩邊同時除以k,因為k<0,因而解集是x<1.故選C.【點睛】本題考查一次函數(shù)與一元一次不等式.8、A【解析】
根據(jù)合并同類項法則;同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;同底數(shù)冪相除,底數(shù)不變指數(shù)相減;冪的乘方,底數(shù)不變指數(shù)相乘對各選項分析判斷后利用排除法求解.【詳解】A.a+a=2a,故本選項正確;B.,故本選項錯誤;C.,故本選項錯誤;D.,故本選項錯誤.故選:A.【點睛】考查同底數(shù)冪的除法,合并同類項,同底數(shù)冪的乘法,冪的乘方與積的乘方,比較基礎,掌握運算法則是解題的關鍵.9、B【解析】
無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時理解有理數(shù)的概念,有理數(shù)是整數(shù)與分數(shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項.【詳解】A、是分數(shù),屬于有理數(shù);B、π是無理數(shù);C、=3,是整數(shù),屬于有理數(shù);D、-是分數(shù),屬于有理數(shù);故選B.【點睛】此題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學習的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).10、A【解析】
直接利用二次根式有意義的條件分析得出答案.【詳解】∵式子在實數(shù)范圍內(nèi)有意義,∴x﹣1>0,解得:x>1.故選:A.【點睛】此題主要考查了二次根式有意義的條件,正確把握定義是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、6【解析】
根據(jù)等角對等邊,可得AC=BC,由等腰三角形的“三線合一”可得AD=BD=AB,利用直角三角形斜邊的中線等于斜邊的一半,可得CD=AB,由AP2-PB2=48
,利用平方差公式及線段的和差公式將其變形可得CD·PD=12,利用△PCD的面積=CD·PD可得.【詳解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB
,∴AD=BD=CD=AB,∵AP2-PB2=48
,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48,∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面積=CD·PD=6.故答案為6.【點睛】此題考查等腰三角形的性質(zhì),直角三角形的性質(zhì),解題關鍵在于利用等腰三角形的“三線合一12、1.【解析】試題分析:如圖,∵矩形的對邊平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考點:1軸對稱;2矩形的性質(zhì);3等腰三角形.13、①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)【解析】
(1)在上任意取一點,分別連接,;(2)分別作弦,的垂直平分線,兩條垂直平分線交于點.點就是所在圓的圓心.【詳解】解:根據(jù)線段的垂直平分線的性質(zhì)定理可知:,所以點是所在圓的圓心(理由①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓):)故答案為①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)【點睛】本題考查作圖﹣復雜作圖、線段的垂直平分線的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.14、.【解析】
根據(jù)同分母分式加減運算法則化簡即可.【詳解】原式=,故答案為.【點睛】本題考查了分式的加減運算,熟記運算法則是解題的關鍵.15、x≠﹣1【解析】
根據(jù)分母不等于2列式計算即可得解.【詳解】解:根據(jù)題意得x+1≠2,解得x≠﹣1.故答案為:x≠﹣1.【點睛】考查的知識點為:分式有意義,分母不為2.16、9,>【解析】
(1)根據(jù)任意多邊形外角和等于360可以得到正多邊形的邊數(shù)(2)用科學計算器計算即可比較大小.【詳解】(1)正多邊形的一個外角是40°,任意多邊形外角和等于360(2)利用科學計算器計算可知,sin37.5°.故答案為(1).9,(2).>【點睛】此題重點考察學生對正多邊形外交和的理解,掌握正多邊形外角和,會用科學計算器是解題的關鍵.17、50°.【解析】
根據(jù)線段垂直平分線上的點到兩端點的距離相等可得AD=BD,根據(jù)等邊對等角可得∠A=∠ABD,然后表示出∠ABC,再根據(jù)等腰三角形兩底角相等可得∠C=∠ABC,然后根據(jù)三角形的內(nèi)角和定理列出方程求解即可:【詳解】∵MN是AB的垂直平分線,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案為50°.三、解答題(共7小題,滿分69分)18、【解析】
先根據(jù)分式混合運算順序和運算法則化簡原式,再解方程組求得a、b的值,繼而代入計算可得.【詳解】原式=,=,=,解方程組得,所以原式=.【點睛】本題主要考查分式的化簡求值和解二元一次方程組,解題的關鍵是熟練掌握分式混合運算順序和運算法則.19、(1)證明見解析(2)7/24(3)25/6【解析】(1)證明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。在△ABG≌△C′DG中,∵∠BAG=∠C,AB=C′D,∠ABG=∠ADC′,∴△ABG≌△C′DG(ASA)。(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。設AG=x,則GB=1﹣x,在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(1﹣x)2,解得x=。∴。(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD?!郒D=AD=4?!遲an∠ABG=tan∠ADE=?!郋H=HD×=4×。∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位線。∴HF=AB=×6=3?!郋F=EH+HF=。(1)根據(jù)翻折變換的性質(zhì)可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出結(jié)論。(2)由(1)可知GD=GB,故AG+GB=AD,設AG=x,則GB=1-x,在Rt△ABG中利用勾股定理即可求出AG的長,從而得出tan∠ABG的值。(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根據(jù)tan∠ABG的值即可得出EH的長,同理可得HF是△ABD的中位線,故可得出HF的長,由EF=EH+HF即可得出結(jié)果。20、(1)y=4x,y=﹣x+5;(2)0<x<1或x>4;(3)P的坐標為(【解析】
(1)把A(1,4)代入y=mx,求出m=4,把B(4,n)代入y=4(2)根據(jù)圖像解答即可;(3)作B關于x軸的對稱點B′,連接AB′,交x軸于P,此時PA+PB=AB′最小,然后用待定系數(shù)法求出直線AB′的解析式即可.【詳解】解:(1)把A(1,4)代入y=mx∴反比例函數(shù)的解析式為y=4x把B(4,n)代入y=4x∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:k+b=44k+b=1解得:k=-1∴一次函數(shù)的解析式為y=﹣x+5;(2)根據(jù)圖象得當0<x<1或x>4,一次函數(shù)y=﹣x+5的圖象在反比例函數(shù)y=4x∴當x>0時,kx+b<mx(3)如圖,作B關于x軸的對稱點B′,連接AB′,交x軸于P,此時PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),設直線AB′的解析式為y=px+q,∴p+q=44p+q=-1解得p=-5∴直線AB′的解析式為y=-5令y=0,得-5解得x=175∴點P的坐標為(175【點睛】本題考查了待定系數(shù)法求反比例函數(shù)及一次函數(shù)解析式,利用圖像解不等式,軸對稱最短等知識.熟練掌握待定系數(shù)法是解(1)的關鍵,正確識圖是解(2)的關鍵,根據(jù)軸對稱的性質(zhì)確定出點P的位置是解答(3)的關鍵.21、證明見解析.【解析】
根據(jù)等式的基本性質(zhì)可得,然后利用SAS即可證出,從而證出結(jié)論.【詳解】證明:,,即,在和中,,,.【點睛】此題考查的是全等三角形的判定及性質(zhì),掌握利用SAS判定兩個三角形全等和全等三角形的對應邊相等是解決此題的關鍵.22、(1)k=2;(2)點D經(jīng)過的路徑長為.【解析】
(1)根據(jù)題意求得點B的坐標,再代入求得k值即可;(2)設平移后與反比例函數(shù)圖象的交點為D′,由平移性質(zhì)可知DD′∥OB,過D′作D′E⊥x軸于點E,交DC于點F,設CD交y軸于點M(如圖),根據(jù)已知條件可求得點D的坐標為(﹣1,1),設D′橫坐標為t,則OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的長,即可得點D經(jīng)過的路徑長.【詳解】(1)∵△AOB和△COD為全等三的等腰直角三角形,OC=,∴AB=OA=OC=OD=,∴點B坐標為(,),代入得k=2;(2)設平移后與反比例函數(shù)圖象的交點為D′,由平移性質(zhì)可知DD′∥OB,過D′作D′E⊥x軸于點E,交DC于點F,設CD交y軸于點M,如圖,∵OC=OD=,∠AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐標為(﹣1,1),設D′橫坐標為t,則OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函數(shù)圖象上,∴t(t+2)=2,解得t=或t=﹣﹣1(舍去),∴D′(﹣1,+1),∴DD′=,即點D經(jīng)過的路徑長為.【點睛】本題是反比例函數(shù)與幾何的綜合題,求得點D′的坐標是解決第(2)問的關鍵.23、(1),;(2)點C的坐標為或;(3)2.【解析】試題分析:(1)由點A的坐標利用反比例函數(shù)圖象上點的坐標特征即可求出a值,從而得出反比例函數(shù)解析式;由勾股定理得出OA的長度從而得出點B的坐標,由點A、B的坐標利用待定系數(shù)法即可求出直線AB的解析式;
(2)設點C的坐標為(m,0),令直線AB與x軸的交點為D,根據(jù)三角形的面積公式結(jié)合△ABC的面積是8,可得出關于m的含絕對值符號的一元一次方程,解方程即可得出m值,從而得出點C的坐標;
(3)設點E的橫坐標為1,點F的橫坐標為6,點M、N分別對應點E、F,根據(jù)反比例函數(shù)解析式以及平移的性質(zhì)找出點E、F、M、N的坐標
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海個人租房合同-家具齊全
- 產(chǎn)品責任一次性賠償協(xié)議
- 人力資源董事聘任協(xié)議
- 互聯(lián)網(wǎng)運營專員勞動合同
- 二手車交易抵押合同模板
- 倉儲物流服務標準化
- 產(chǎn)業(yè)園區(qū)物業(yè)綜合管理服務方案
- 代課合同范本
- 臨時租車服務協(xié)議
- 企業(yè)社保代理協(xié)議
- 珍愛生命主題班會
- 陳皮倉儲合同模板例子
- 2024年安全生產(chǎn)月全國安全生產(chǎn)知識競賽題庫及答案(共六套)
- 2024-2025學年滬教版小學四年級上學期期中英語試卷及解答參考
- DB23T 3844-2024煤礦地區(qū)地震(礦震)監(jiān)測臺網(wǎng)技術(shù)要求
- 《阿凡達》電影賞析
- DB42-T 2286-2024 地鐵冷卻塔衛(wèi)生管理規(guī)范
- 合作伙伴合同協(xié)議書范文5份
- 小學生主題班會《追夢奧運+做大家少年》(課件)
- 公安機關人民警察高級執(zhí)法資格考題及解析
- 浙教版信息科技四年級上冊全冊教學設計
評論
0/150
提交評論