高數(shù)第八章四節(jié)8-4_第1頁
高數(shù)第八章四節(jié)8-4_第2頁
高數(shù)第八章四節(jié)8-4_第3頁
高數(shù)第八章四節(jié)8-4_第4頁
高數(shù)第八章四節(jié)8-4_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第四節(jié)全微分及其應用一、全微分的概念二、全微分在近似計算中的應用三、小結思考題由一元函數(shù)微分學中增量與微分的關系得一、全微分的概念全增量的概念全微分的定義事實上可微的條件證總成立,同理可得一元函數(shù)在某點的導數(shù)存在微分存在.多元函數(shù)的各偏導數(shù)存在全微分存在.?例如,則當時,說明:多元函數(shù)的各偏導數(shù)存在并不能保證全微分存在,證(依偏導數(shù)的連續(xù)性)同理習慣上,記全微分為全微分的定義可推廣到三元及三元以上函數(shù)通常我們把二元函數(shù)的全微分等于它的兩個偏微分之和這件事稱為二元函數(shù)的微分符合疊加原理.疊加原理也適用于二元以上函數(shù)的情況.解所求全微分解解所求全微分證令則同理不存在.多元函數(shù)連續(xù)、可導、可微的關系函數(shù)可微函數(shù)連續(xù)偏導數(shù)連續(xù)函數(shù)可導也可寫成二、全微分在近似計算中的應用解由公式得1、多元函數(shù)全微分的概念;2、多元函數(shù)全微分的求法;3、多元函數(shù)連續(xù)、可導、可微的關系.(注意:與一元函數(shù)有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論