安徽省阜陽(yáng)市潁上二中2023屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第1頁(yè)
安徽省阜陽(yáng)市潁上二中2023屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第2頁(yè)
安徽省阜陽(yáng)市潁上二中2023屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第3頁(yè)
安徽省阜陽(yáng)市潁上二中2023屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第4頁(yè)
安徽省阜陽(yáng)市潁上二中2023屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a2.若,則函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是()A.B.C.D.3.設(shè)命題:,,則為A., B.,C., D.,4.已知正四面體的內(nèi)切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.275.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.6.設(shè),,,則,,三數(shù)的大小關(guān)系是A. B.C. D.7.函數(shù)的部分圖象如圖中實(shí)線所示,圖中圓與的圖象交于兩點(diǎn),且在軸上,則下列說(shuō)法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點(diǎn)成中心對(duì)稱8.在平面直角坐標(biāo)系中,已知是圓上兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)到直線的距離之和的最大值為,若數(shù)列的前項(xiàng)和恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.9.已知實(shí)數(shù)滿足約束條件,則的最小值是A. B. C.1 D.410.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,D是AB的中點(diǎn),若,且,則面積的最大值是()A. B. C. D.11.某高中高三(1)班為了沖刺高考,營(yíng)造良好的學(xué)習(xí)氛圍,向班內(nèi)同學(xué)征集書法作品貼在班內(nèi)墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細(xì)節(jié)決定成敗”,為了弄清“天道酬勤”這一作品是誰(shuí)寫的,班主任對(duì)三人進(jìn)行了問(wèn)話,得到回復(fù)如下:小王說(shuō):“入班即靜”是我寫的;小董說(shuō):“天道酬勤”不是小王寫的,就是我寫的;小李說(shuō):“細(xì)節(jié)決定成敗”不是我寫的.若三人的說(shuō)法有且僅有一人是正確的,則“入班即靜”的書寫者是()A.小王或小李 B.小王 C.小董 D.小李12.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在邊長(zhǎng)為的菱形中,點(diǎn)在菱形所在的平面內(nèi).若,則_____.14.已知的展開式中項(xiàng)的系數(shù)與項(xiàng)的系數(shù)分別為135與,則展開式所有項(xiàng)系數(shù)之和為______.15.已知向量,,,則_________.16.設(shè)是定義在上的函數(shù),且,對(duì)任意,若經(jīng)過(guò)點(diǎn)的一次函數(shù)與軸的交點(diǎn)為,且互不相等,則稱為關(guān)于函數(shù)的平均數(shù),記為.當(dāng)_________時(shí),為的幾何平均數(shù).(只需寫出一個(gè)符合要求的函數(shù)即可)三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知滿足,且,求的值及的面積.(從①,②,③這三個(gè)條件中選一個(gè),補(bǔ)充到上面問(wèn)題中,并完成解答.)18.(12分)已知函數(shù),.(1)若時(shí),解不等式;(2)若關(guān)于的不等式在上有解,求實(shí)數(shù)的取值范圍.19.(12分)在中,為邊上一點(diǎn),,.(1)求;(2)若,,求.20.(12分)已知函數(shù),.(1)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù);(2)若在上單調(diào)遞增,且求c的最大值.21.(12分)等差數(shù)列的前項(xiàng)和為,已知,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列{}的前項(xiàng)和為,求使成立的的最小值.22.(10分)設(shè)為實(shí)數(shù),在極坐標(biāo)系中,已知圓()與直線相切,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

兩復(fù)數(shù)相等,實(shí)部與虛部對(duì)應(yīng)相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的概念,屬于基礎(chǔ)題.2、B【解析】函數(shù)在區(qū)間內(nèi)單調(diào)遞增,,在恒成立,在恒成立,,函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是,故選B.3、D【解析】

直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.【詳解】因?yàn)槿Q命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點(diǎn)睛】本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.4、D【解析】

設(shè)正四面體的棱長(zhǎng)為,取的中點(diǎn)為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內(nèi)切球的半徑,在中,根據(jù)勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設(shè)正四面體的棱長(zhǎng)為,取的中點(diǎn)為,連接,作正四面體的高為,則,,,設(shè)內(nèi)切球的半徑為,內(nèi)切球的球心為,則,解得:;設(shè)外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點(diǎn)睛】本題主要考查了多面體的內(nèi)切球、外接球問(wèn)題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎(chǔ)題.5、C【解析】

根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡(jiǎn)可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無(wú)最大值.若,則當(dāng)時(shí),,在上單調(diào)遞減,當(dāng)時(shí),,在上單調(diào)遞增.故在處取得最大值.故,化簡(jiǎn)得.故,令,可令,故,當(dāng)時(shí),,在遞減;當(dāng)時(shí),,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問(wèn)題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進(jìn)而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.6、C【解析】

利用對(duì)數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質(zhì)和計(jì)算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.【點(diǎn)睛】本題考查對(duì)數(shù)值,指數(shù)值和正弦值大小的比較,是基礎(chǔ)題,解題時(shí)選擇合適的中間值比較是關(guān)鍵,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.7、B【解析】

根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點(diǎn)的橫坐標(biāo)為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當(dāng)時(shí),,即函數(shù)的一個(gè)對(duì)稱中心為,即函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱.故選B.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.8、B【解析】

由于到直線的距離和等于中點(diǎn)到此直線距離的二倍,所以只需求中點(diǎn)到此直線距離的最大值即可。再得到中點(diǎn)的軌跡是圓,再通過(guò)此圓的圓心到直線距離,半徑和中點(diǎn)到此直線距離的最大值的關(guān)系可以求出。再通過(guò)裂項(xiàng)的方法求的前項(xiàng)和,即可通過(guò)不等式來(lái)求解的取值范圍.【詳解】由,得,.設(shè)線段的中點(diǎn),則,在圓上,到直線的距離之和等于點(diǎn)到該直線的距離的兩倍,點(diǎn)到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點(diǎn)睛】本題考查了向量數(shù)量積,點(diǎn)到直線的距離,數(shù)列求和等知識(shí),是一道不錯(cuò)的綜合題.9、B【解析】

作出該不等式組表示的平面區(qū)域,如下圖中陰影部分所示,設(shè),則,易知當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),z取得最小值,由,解得,所以,所以,故選B.10、A【解析】

根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點(diǎn),且,,即,即,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.的面積,所以面積的最大值為.故選:.【點(diǎn)睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運(yùn)算,屬于中檔題.11、D【解析】

根據(jù)題意,分別假設(shè)一個(gè)正確,推理出與假設(shè)不矛盾,即可得出結(jié)論.【詳解】解:由題意知,若只有小王的說(shuō)法正確,則小王對(duì)應(yīng)“入班即靜”,而否定小董說(shuō)法后得出:小王對(duì)應(yīng)“天道酬勤”,則矛盾;若只有小董的說(shuō)法正確,則小董對(duì)應(yīng)“天道酬勤”,否定小李的說(shuō)法后得出:小李對(duì)應(yīng)“細(xì)節(jié)決定成敗”,所以剩下小王對(duì)應(yīng)“入班即靜”,但與小王的錯(cuò)誤的說(shuō)法矛盾;若小李的說(shuō)法正確,則“細(xì)節(jié)決定成敗”不是小李的,則否定小董的說(shuō)法得出:小王對(duì)應(yīng)“天道酬勤”,所以得出“細(xì)節(jié)決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.【點(diǎn)睛】本題考查推理證明的實(shí)際應(yīng)用.12、D【解析】

由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

以菱形的中心為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,再設(shè),根據(jù)求出的坐標(biāo),進(jìn)而求得即可.【詳解】解:連接設(shè)交于點(diǎn)以點(diǎn)為原點(diǎn),分別以直線為軸,建立如圖所示的平面直角坐標(biāo)系,則:設(shè)得,解得,,或,顯然得出的是定值,取則,.故答案為:.【點(diǎn)睛】本題主要考查了建立平面直角坐標(biāo)系求解向量數(shù)量積的有關(guān)問(wèn)題,屬于中檔題.14、64【解析】

由題意先求得的值,再令求出展開式中所有項(xiàng)的系數(shù)和.【詳解】的展開式中項(xiàng)的系數(shù)與項(xiàng)的系數(shù)分別為135與,,,由兩式可組成方程組,解得或,令,求得展開式中所有的系數(shù)之和為.故答案為:64【點(diǎn)睛】本題考查了二項(xiàng)式定理,考查了賦值法求多項(xiàng)式展開式的系數(shù)和,屬于基礎(chǔ)題.15、2【解析】

由得,算出,再代入算出即可.【詳解】,,,,解得:,,則.故答案為:2【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,向量垂直的性質(zhì),向量的模的計(jì)算.16、【解析】

由定義可知三點(diǎn)共線,即,通過(guò)整理可得,繼而可求出正確答案.【詳解】解:根據(jù)題意,由定義可知:三點(diǎn)共線.故可得:,即,整理得:,故可以選擇等.故答案為:.【點(diǎn)睛】本題考查了兩點(diǎn)的斜率公式,考查了推理能力,考查了運(yùn)算能力.本題關(guān)鍵是分析出三點(diǎn)共線.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、見(jiàn)解析【解析】

選擇①時(shí):,,計(jì)算,根據(jù)正弦定理得到,計(jì)算面積得到答案;選擇②時(shí),,,故,為鈍角,故無(wú)解;選擇③時(shí),,根據(jù)正弦定理解得,,根據(jù)正弦定理得到,計(jì)算面積得到答案.【詳解】選擇①時(shí):,,故.根據(jù)正弦定理:,故,故.選擇②時(shí),,,故,為鈍角,故無(wú)解.選擇③時(shí),,根據(jù)正弦定理:,故,解得,.根據(jù)正弦定理:,故,故.【點(diǎn)睛】本題考查了三角恒等變換,正弦定理,面積公式,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.18、(1)(2)【解析】

(1)零點(diǎn)分段法,分,,討論即可;(2)當(dāng)時(shí),原問(wèn)題可轉(zhuǎn)化為:存在,使不等式成立,即.【詳解】解:(1)若時(shí),,當(dāng)時(shí),原不等式可化為,解得,所以,當(dāng)時(shí),原不等式可化為,解得,所以,當(dāng)時(shí),原不等式可化為,解得,所以,綜上述:不等式的解集為;(2)當(dāng)時(shí),由得,即,故得,又由題意知:,即,故的范圍為.【點(diǎn)睛】本題考查解絕對(duì)值不等式以及不等式能成立求參數(shù),考查學(xué)生的運(yùn)算能力,是一道容易題.19、(1);(2)4【解析】

(1),利用兩角差的正弦公式計(jì)算即可;(2)設(shè),在中,用正弦定理將用x表示,在中用一次余弦定理即可解決.【詳解】(1)∵,∴,所以,.(2)∵,∴設(shè),,在中,由正弦定理得,,∴,∴,∵,∴∴.【點(diǎn)睛】本題考查兩角差的正弦公式以及正余弦定理解三角形,考查學(xué)生的運(yùn)算求解能力,是一道容易題.20、(1)見(jiàn)解析(2)2【解析】

(1)將代入可得,令,則,設(shè),則轉(zhuǎn)化問(wèn)題為與的交點(diǎn)問(wèn)題,利用導(dǎo)函數(shù)判斷的圖象,即可求解;(2)由題可得在上恒成立,設(shè),利用導(dǎo)函數(shù)可得,則,即,再設(shè),利用導(dǎo)函數(shù)求得的最小值,則,進(jìn)而求解.【詳解】(1)當(dāng)時(shí),,定義域?yàn)?由可得,令,則,由,得;由,得,所以在上單調(diào)遞增,在上單調(diào)遞減,則的最大值為,且當(dāng)時(shí),;當(dāng)時(shí),,由此作出函數(shù)的大致圖象,如圖所示.由圖可知,當(dāng)時(shí),直線和函數(shù)的圖象有兩個(gè)交點(diǎn),即函數(shù)有兩個(gè)零點(diǎn);當(dāng)或,即或時(shí),直線和函數(shù)的圖象有一個(gè)交點(diǎn),即函數(shù)有一個(gè)零點(diǎn);當(dāng)即時(shí),直線與函數(shù)的象沒(méi)有交點(diǎn),即函數(shù)無(wú)零點(diǎn).(2)因?yàn)樵谏蠁握{(diào)遞增,即在上恒成立,設(shè),則,①若,則,則在上單調(diào)遞減,顯然,在上不恒成立;②若,則,在上單調(diào)遞減,當(dāng)時(shí),,故,單調(diào)遞減,不符合題意;③若,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,所以,由,得,設(shè),則,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增,所以,所以,又,所以,即c的最大值為2.【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)研究函數(shù)的零點(diǎn)問(wèn)題,考查利用導(dǎo)函數(shù)求最值,考查運(yùn)算能力與分類討論思想.21、(1);(2)的最小值為19.【解析】

(1)根據(jù)條件列方程組求出首項(xiàng)、公差,即可寫出等差數(shù)列的通項(xiàng)公式;(2)根據(jù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論