




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
PARTIFUNDAMENTALPRINCIPLES(基本原理)InpartI,wecoversomeofthebasicprinciplesthatapplytoaerodynamicsingeneral.ThesearethepillarsonwhichallofaerodynamicsisbasedChapter1Aerodynamics:SomeIntroductoryThoughtsTheterm“aerodynamics”isgenerallyusedforproblemsarisingfromflightandothertopicsinvolvingtheflowofair.LudwigPrandtl,1949Aerodynamics:Thedynamicsofgases,especiallyofatmosphericinteractionswithmovingobjects.TheAmericanHeritageDictionaryofEnglishLanguage,19691.1ImportanceofAerodynamics:
HistoricalExamplesSeabattlebetweenEnglishfleetandSpanishfleet,Englishchannel,8-8-1588(英國與西班牙海戰(zhàn),英吉利海峽)FirstflightofWrightbrothers,12-27-1903(懷特兄弟首次飛行)MinimizingofaerodynamicheatingofICBMs(洲際彈道導(dǎo)彈氣動熱降低問題)Impetustothestudyoffluidmechnics(流體力學(xué)研究的推動力)1.Newton’ssine-squarelaw2.ExperimentscarriedoutbyD’Alembert3.Euler’sdescriptionoftheflowmodel1.Newton’ssine-squarelawa)Newtonconsideredafluidflowasauniform,rectilinearstreamofparticles,muchlikeacloudofpelletsfromashotgunblast.b)Newtonassumedthatuponstrikingasurfaceinclinedataangletothestream,theparticleswouldtransfertheirnormalmomentumtothesurfacebuttheirtangentialmomentumwouldbepreserved.Hence,aftercollisionwiththesurface,theparticleswouldthenmovealongthesurface.Thisledtoanexpressionforthehydrodynamicsforceonthesurfacewhichvariesas2.D’Alembert
Theexperimentresultsshow:therulethatforobliqueresistancevarieswiththesinesquareoftheangleoftheincidenceholdsgoodonlyforanglebetween50and90degandmustbeabandonedforlesserangles3.Eulernoted
Thefluidmovingtowardabody“beforereachingthelatter,bendsitsdirectionanditsvelocitysothatwhenitreachesthebodyitflowspassitalongthesurface,andexercisenootherforceonthebodyexceptthepressurecorrespondingtothesinglepointsofthecontact.”4.Realcaseforfluidapproachingabody
Allthefluidparticlesareinrandommotion,andhasaaveragevelocity.Duringtheirmotion,theycollidewitheachother.
Themoleculesstrikeontothesolidsurfacewillberebounded,andthesereboundedmoleculeswillmakecollisiontoothermolecules.
Thisprocesstransfersthemessageoftheexistenceofthebody,andmostoftheparticleswillgootherround.Afterthecollisionbetweenfluidparticlesandsolidsurface,the
momentumchangeoftheparticlesisintheperpendiculardirectionofthesurface.FirstflightofWrightbrothersDec.17,1903WilburandOrvilleWright'sWrightFlyerwasthefirstsuccessfulairplane.OnDecember17,1903,atKittyHawk,NorthCarolina,OrvilleWrightflewthefirstheavier-than-airmachineinapowered,controlled,andsustainedflight.TheFlyer,constructedofwood,wire,andmuslin,wentadistanceof120feetin12seconds.Itwasatremendoussuccess,comingfromalongseriesofaeronauticsexperimentsthattheWrightBrothersstartedin1899withakite.Attherearofthe1903WrightFlyeronefindsapairofpusherpropellers.Thepropellersarelong,thin,twistedpiecesofwoodwhicharespunathighspeed.Controlofroll:WINGWARPOverviewofWrightBrothersDiscoveriesAerodynamicheatingofthereentryvehicle
ICBMsreentrytheatmosphereatthespeedsoffrom6to6.7km/s.Theaerodynamicheatingofthereentryvehiclesbecomessevere,thecoverofthewarheadwillbeheatedupto10,000K.Bluntreentrybodydesigncanminimizetheaerodynamicheatingproblem.1.2Aerodynamics:ClassificationandPracticalObjectives
(空氣動力學(xué):分類和應(yīng)用目標(biāo))Distinctionofsolids,liquids,andgasesPracticalapplicationsinengineeringSolids,liquids,andgasesinacontainerThesolidobjectwillnotchange:itsshapeandboundarieswillremindthesame.Theliquidwillchangeitsshapetoconformtothatofthecontainerandwilltaketakeonthesameboundariesasthecontaineruptothemaximumdepthoftheliquid.Thegaswillcompletelyfillthecontainer,takingonthesameboundariesasthecontainer.Solidand“fluid”(aliquidoragas)underatangentialforce==deformation固體和流體在受到剪應(yīng)力時,各自形狀所發(fā)生的變化方式截然不同。Underaforceappliedtangentiallytothesurfaceofasolidbody,thesolidbodywillundergoafinitedeformation,andthetangentialforceperunitarea—theshearstress—willusuallybeproportionaltotheamountofdeformation.Ifthecasehappensforafluid,then,thefluidwillexperienceacontinuouslyincreasingdeformationandtheshearstresswillusuallybeproportionaltotherateofthedeformation.Solid:fluid:Shearstress剪應(yīng)力Deformation變形Rateofdeformation變形率Mechanicsdistinctionofsolids,liquids,andgasesDistinctionofsolids,liquids,andgasesrespectstotheintermolecularforcesFluiddynamicsissubdividedintothreeareas:
Hydrodynamics---flowofliquidsGasdynamics---flowofgases
Aerodynamics---flowofairPracticalobjectivesofAerodynamics1.Thepredictionofforcesandmomentsonandheattransferto,bodiesmovingthroughafluid.2.Determinationofflowsmovinginternallythroughducts3.Externalaerodynamics4.Internalaerodynamics1.3RoadMapofthischapterWhat’stheusageoftheroadmapAtthebeginningofeachchapter,roadmapgiveyouthesenseforyougettoknowwhereyouare,whereyouaregoing,andhowcanyougetthereShowtheinterrelationshipofthematerialsinthechapterAttheendofthechapter,afteryoulookbackovertheroadmap,youwillseewhereyoustarted,whereyouarenow,andwhatyoulearnedinbetween.1.4SomefundamentalAerodynamicVariablesAerodynamicvariablesaresomethingliketechnicalvocabularyforthephysicalscienceandengineeringunderstandingFirstintroducedaerodynamicvariables:
pressure,density,temperature,andflowvelocityThevelocitydescriptionofafluidisquitedifferenttothatofasolidbody.VelocityofaflowinggasatanyfixedpointBinspaceisthevelocityofasmallfluidelementasitsweepsthroughB.1.5AerodynamicforcesandmomentsAerodynamicforcesandmomentsonamovingbodyareduetoonlytwobasicsources:1.Pressuredistributionoverthebodysurface2.ShearstressdistributionoverthebodysurfaceBothpressureandshearstresshavedimensionsofforceperunitarea.
pressureactsnormaltothebodysurface.shearstressactstangentialtothesurface.TheneteffectofthepressureandshearstressdistributionresultsinaaerodynamicforceRandmomentMonthebody.TheresultantforceRcanbesplitintocomponentsL=lift:componentofRperpendiculartoD=drag:componentsofRparallelto(windsystem)N=normalforce:componentofRperpendiculartoc
A=axialforce:componentsofRparalleltoc
(bodysystem)Afterthe
pressureandshearstress
distributionsbeingdefined,andthegeometryshapeofthebodybeingknown,theresultantaerodynamicforcecanbeobtainedbytheintegrationofthepressureandshearstress
distributionsalongthesurfaceofthebody.FromEqs.(1.7),(1.8)and(1.11),wecanseeclearly,thatthesourcesoftheaerodynamiclift,drag,andmomentsonabodyarethepressureandshearstressdistributionintegratedoverthebody.Thebasictaskoftheoreticalaerodynamicsistocalculatep(s)andτ(s)foragivenbodyshapeandfreestreamconditions,andthenobtaintheaerodynamicforcesandmomentswiththeuseofEqs.(1.7),(1.8)and(1.11)Dimensionlessaerodynamicforceandmomentcoefficientsareevenmoreimportantthantheaerodynamicforcesandmoments.Definitionofanddensityandvelocityinthefreestream,whichisfaraheadofthebody.Definitionofdynamicpressure
ThedynamicpressurehastheunitofpressureDefinitionofdimensionlessforceandmomentcoefficientsLiftcoefficient:
Dragcoefficient:
Normalforcecoefficient:
Axialforcecoefficient:Momentcoefficient:
:reference
area:reference
length
Definitionofandmaybedifferentfordifferentshapesofthebodybeingconcerned.Thesymbolsincapitalletters,suchasrepresentstheforceandmomentcoefficientsforathree-dimensionalbody.Thesymbolsinlowercaselettersdenotetheforceandmomentcoefficientsforatwo-dimensionalbody
areforceandmomentsperunitspanTwoadditionaldimensionlessquantitiesofimmediateusearePressurecoefficientSkinfrictioncoefficientWhereisthe
freestreampressure1.6Centerofpressure(壓力中心)Thecenterofthepressureisapointonthebodyaboutwhichtheaerodynamicmomentcontributedbythepressureandshearstressdistributionsisequaltozero.Ifisdefinedasthemomentgeneratedbythedistributedloads,andisthecomponentoftheresultantforce,thenthepressurecentermustbelocateddownstreamoftheleadingedgeIftheangleofattackissmall,,thusItiscleartoseethatasliftapproachestozero,thecenterofpressuremovestoinfinity.So,thecenterofpressureisnotalwaysaconvenientconceptinaerodynamics.Thereareotherwaystodefinetheforce-and-momentsystemonanairfoil1.7Dimensionalanalysis:TheBuchinghamPItheorem(量綱分析:PI定理)※Whatphysicalquantitiesdeterminethevariationoftheaerodynamicforcesandmoments?Onaphysical,intuitivebasis,weexpectRisdependon:1.Freestreamvelocity2.Freestreamdensity3.Viscosityofthefluid4.Thesizeofthebody5.Thecompressibilityofthefluid※
Howtofindaprecisefunctionalrelationfortheequationabove?Executehugeamountofwindtunnelexperimentmightbeoneway.Isthereanyotherwaycandomoreeffectively?Methodofdimensionalanalysis※AnobviousfactforthedimensionalanalysisAllthetermsinthisphysicalrelationmusthavethesamedimensions※BuckinghamPItheorem1.LetKtobethenumberoffundamentaldimensionsrequiredtodescribethephysicalvariables2.LetrepresentNphysicalvariablesinthephysicalrelation3.Thenthephysicalrelationcanbereexpressedasarelationof(N-K)dimensionlessproducts.4.EveryproductisadimensionlessproductofasetofK
physicalvariablesplusoneotherphysicalvariable.5.iscalledrepeatingvariables.Thesevariablesshouldincludeall
theKdimensionsusedintheproblem.※Aerodynamicforceonagivenbodyatagivenangleofattack.1.Eq.(1.23)canbeexpressedas2.FollowingBuckinghamtheoremandourphysicalintuition,thefundamentaldimensionsarem,landt.Hence,
K=33.Thephysicalvariablesandtheirdimensionsareand
N=64.AsexplainedbyBuckinghamtheorem,Eq.(1.27)canbereexpressedintermsofN-K=3
dimensionlessproducts,thatis5.Now,wechoseasrepeatingvariables,fromEq.(1.26),theseproductsare5.Assume
indimensionalform6.Asisdimensionless,then7.TheaboveEquationsgived=-1,b=-2,ande=-2,thenwehaveor
whereS
isdefinedasreferencearea8.Inthesameway,wecanobtaintheremainingproductsasfollowsReynoldsNumber雷諾數(shù)
isaforcecoefficient,definedasMachNumber馬赫數(shù)9.InsertingalltheproductsintoEq.(1.28)
oror10.Importantconclusion:Inthegeneralfunctionform,RisexpressedwithfiveindependentphysicalvariablesAfterourdimensionalanalysis,Rcanbeexpressedwithonly
twoindependentvariables
RcanbeexpressedintermsofadimensionlessforcecoefficientisafunctionofonlyReand11.ImportantapplicationsofReand.
similarityparameters
12.Asliftanddragarecomponentsoftheresultantforce,thentheliftanddragcoefficientsarealsofunctionsofonlyRe
and.Moreover,arelationsimilartoaerodynamicforcesholdsforaerodynamicmoments,anddimensionanalysisyields13.Iftheangleofattackisallowedtovary,then,thelift,dragandmomentcoefficientswillingeneraldependonthevalueof.14.Othersimilarityparametersassociatedwiththermodynamicsandheattransfer.Physicalvariablesshouldbeaddedtemperature,specificheat,thermalconductivity,temperatureofthebodysurfaceFundamentaldimensionshouldbeaddedunitofthetemperature(K)Similarityparameterscreated1.8Flowsimilarity(流動相似)※DefinitionofflowsimilarityDifferentflowsaredynamicallysimilarif:Thestreamlinepatternsaregeometricallysimilar2.Thedistributionsofetc.,throughouttheflowfieldarethesamewhenplottedagainstcommonnondimensionalcoordinates.3.Theforcecoefficientsarethesame※CriteriatoensureflowsimilarityThebodiesandanyothersolidboundariesaregeometricallysimilarforbothflows.2.Thesimilarityparametersareidenticalforbothflows.3.ReynoldsandMachnumberarethemostdominantsimilarityparametersformanyaerodynamicproblems.※Examples1.4and1.51.9FluidStatics:BuoyancyForce
(流體靜力學(xué):浮力)Skippedover1.10TypesofFlow(流動類型)1.Thepurposeforcategorizingdifferenttypesofflow.2.Thestrategytosimplifytheflowproblems.3.Itemizationandcomparisonofdifferenttypesofflow,andbriefdescriptionoftheirmostimportantphysicalphenomena.1.10.1Continuumversusfreemoleculeflow1.Definitionofmean-free
path.2.Continuumflow.3.Freemoleculeflow4.Inmostaerodynamicproblems,wewillalwaystreatthefluidascontinuumflow.1.10.2Inviscidversusviscousflow1.Therandommotionofthemoleculewilltransporttheirmass,momentum,andenergyfromonelocationtoanotherinthefluid.Thistransportonamoleculescalegivesrisetothephenomenaofmassdiffusion,viscosity,andthermalconduction.Allrealflowsexhibittheeffectofthesetransportphenomena;suchflowsarecallviscousflows.2.Aflowthatisassumedfreewithallthesephenomenaaboveiscalledinviscidflow.3.InviscidflowisapproachedinthelimitastheReynoldsnumbergoestoinfinity.4.TheflowwithhighReynoldsnumber,canbeassumedtobeinviscid.Andtheinfluenceof
friction,thermalconduction,anddiffusionislimitedintheboundarylayer.5.Theinviscidtheorycanbeusedtopredictsthepressuredistributionandlift.However,itcannotpredictstotaldrag.6.Flowsdominatedbyviscouseffects.
FlowaroundairfoilathighangleofattackFlowaroundbluntbody7.Noinviscidtheorycanindependentlypredicttheaerodynamicsofsuchflows.
1.10.3IncompressibleversuscompressibleFlowsAflowinwhichthedensityisconstantiscalledincompressible.Incontrast,aflowwherethedensityisvariableiscalledcompressible.
2.Alltheflowsarecompressible,moreorless3.Thereareanumberofaerodynamicproblemsthatcanbemodeled
asbeingincompressible
withoutanydetrimentallossofaccuracy.4.Inmanycases,whetherthecompressibilityshouldbeconsideredornot,ismanlybasedon
theMachnumberoftheflow.1.10.4MachnumberregimesLocaldefinitionSubsonicifSonicif
Supersonicif
WhereisthelocalMachnumberatanarbitrarypointinaflowfield.2.Definitionforwholeflowfield3.Blockdiagramcategorizingthetypesofaerodynamicflows1.11Appliedaerodynamics:Theaerodynamiccoefficients—TheirmagnitudeandvariationsDifferencebetweenthefundamentals
andapplicationsofaerodynamics.
2.Aerodynamiccoefficients,suchaslift,drag,andmomentcoefficients,aretheprimarylanguageofapplicationexternalaerodynamics.3.Typicalvaluesfortheaerodynamiccoefficientsforsomecommonaerodynamicshapesandit’svariationwithMachnumberandReynoldsnumber.4.Sometypicaldragcoefficientsforvariousaerodynamicconfigurationsinlowspeedflows.
Comparisonthroughcaseatoc:
theReynoldsnumbersforallthesethreecasesarethesamebasedond(diameter).thewakesaregettingsmallerinsizefromatoc
alsobecomessmallerfromcase
atoc
Comparisonbetweencasebandd:
theReynoldsnumberincaseb:theReynoldsnumberincased
:isthesameforcasebtod
foracircularcylinderisrelativelyindependentofReynoldsnumberbetweenRe=andComparisonbetweencasebtoe:
theReynoldsnumberincaseb:theReynoldsnumberincasee:incaseeis0.6
smallerwakebehindthecylinderincasee
comparedtothatincase
b.Note:Withbasedonthefrontalprojectedarea(S=d(1)perunitspan),thevalueofrangefromamaximum2tonumbersaslowas0.12.MagnitudeofReynoldsnumberofaflowaroundacircularcylinderatstandardsealevel,where,
Th
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高三下學(xué)期《遇見最美的時光我的人生滿意度》主題班會課件
- 汽車使用與維護 課件 項目三 空調(diào)系統(tǒng)的使用與維護
- 2025年環(huán)保速凍噴劑項目可行性研究報告
- 江蘇航運職業(yè)技術(shù)學(xué)院《食品類專業(yè)寫作》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江省杭州市杭州第二中學(xué)2025年高三下第一次摸底考試歷史試題試卷含解析
- 那曲市2024-2025學(xué)年初三下學(xué)期期末考試物理試題仿真(A)卷含解析
- 低壓電器 課件 單元三 項目二 任務(wù)二 掌握三相異步電動機點動控制線路
- 無錫科技職業(yè)學(xué)院《統(tǒng)計學(xué)原理含統(tǒng)計軟件應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 江蘇工程職業(yè)技術(shù)學(xué)院《ADR實務(wù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 汕頭大學(xué)《鋼與組合結(jié)構(gòu)設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷
- 加油站施工施工組織設(shè)計方案
- 應(yīng)急停水停電培訓(xùn)資料
- 傳染病防治知識和技能培訓(xùn)計劃
- 《EPS處理表面氧化鐵皮技術(shù)要求 》
- 【MOOC】書法鑒賞-浙江傳媒學(xué)院 中國大學(xué)慕課MOOC答案
- 足球場運動草坪全年養(yǎng)護計劃
- (高清版)DBJ52∕T 017-2014 回彈法檢測山砂混凝土抗壓強度技術(shù)規(guī)程
- 現(xiàn)代化背景下企業(yè)檔案管理創(chuàng)新路徑
- 《幼兒教育政策與法規(guī)》課件-單元4 幼兒園的保育和教育
- 2024年私募基金爭議解決研究報告之一:私募基金管理人謹(jǐn)慎勤勉義務(wù)之邊界探析-國楓研究院
- 環(huán)衛(wèi)設(shè)施設(shè)備更新實施方案
評論
0/150
提交評論