廣東省云浮市羅定瀧水中學(xué)2023年高一數(shù)學(xué)文測試題含解析_第1頁
廣東省云浮市羅定瀧水中學(xué)2023年高一數(shù)學(xué)文測試題含解析_第2頁
廣東省云浮市羅定瀧水中學(xué)2023年高一數(shù)學(xué)文測試題含解析_第3頁
廣東省云浮市羅定瀧水中學(xué)2023年高一數(shù)學(xué)文測試題含解析_第4頁
廣東省云浮市羅定瀧水中學(xué)2023年高一數(shù)學(xué)文測試題含解析_第5頁
免費預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省云浮市羅定瀧水中學(xué)2023年高一數(shù)學(xué)文測試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.下列函數(shù)中,在其定義域內(nèi)為減函數(shù)的是(

)A

B

C

D

參考答案:A2.已知函數(shù)則的值為(

)A.1

B.2

C.4

D.5參考答案:D3.已知是以為周期的偶函數(shù),且時,,則當(dāng)時,等于

)A.

B.

C.

D.參考答案:C略4.函數(shù)f(x)=[x]的函數(shù)值表示不超過x的最大整數(shù),當(dāng)≤x≤時,下列函數(shù)中,其值域與f(x)的值域不相同的函數(shù)為

(

)A.y=x,x∈{-1,0,1,2,3}

B.y=2x,x∈{,0,,1,}

C.y=,x∈{-1,1,,,}

D.y=x2-l,x∈{0,1,,,2}參考答案:C5.已知是的三個內(nèi)角,且其對邊分別為且(I)求角的大小;(II)若求的面積.參考答案:解:I)由題意知:(II)由題意知:

略6..已知,,則(

)A.{0} B.{1,2} C.{1} D.{1,0,2}參考答案:C【分析】先求得集合的元素,由此求得補集.【詳解】依題意,所以,故,故選C.【點睛】本小題主要考查集合補集的概念及運算,考查一元二次方程的解法,屬于基礎(chǔ)題.7.設(shè)Sn是等差數(shù)列{an}的前n項和,若,則()A. B. C.2 D.參考答案:A【分析】題目已知數(shù)列為等差數(shù)列,且知道某兩項的比值,要求某兩個前項和的比值,故考慮用相應(yīng)的等差數(shù)列前項和公式,將要求的式子轉(zhuǎn)化為已知條件來求解.【詳解】,故選A.【點睛】本小題主要考查等差數(shù)列前項和公式和等差中項的應(yīng)用.等差數(shù)列求和公式有兩個,它們分別是,和.在解題過程中,要選擇合適的公式來解決.本題中已知項之間的比值,求項之間的比值,故考慮用第二個公式來計算,簡化運算.8.給出下列四個命題:(1)若a>b,c>d,則a﹣d>b﹣c;(2)若a2x>a2y,則x>y;(3)a>b,則;(4)若,則ab<b2.其中正確命題是

.(填所有正確命題的序號)參考答案:(1)(2)(4)【考點】命題的真假判斷與應(yīng)用.【專題】綜合題;規(guī)律型;轉(zhuǎn)化思想;綜合法;不等式的解法及應(yīng)用;簡易邏輯.【分析】分別利用不等式的基本性質(zhì)逐一核對四個命題得答案.【解答】解:(1)由c>d,得﹣d>﹣c,又a>b,則a﹣d>b﹣c.故(1)正確;(2)若a2x>a2y,則a2≠0,則,∴x>y.故(2)正確;(3)若a>0>b,則a﹣b>a>0,則.故(3)錯誤;(4)若,則b<a<0,∴ab<b2.故(4)正確.故答案為:(1)(2)(4).【點評】本題考查命題的真假判斷與應(yīng)用,考查了不等式的基本性質(zhì),是基礎(chǔ)題.9.要得到函數(shù)的圖象,只需將函數(shù)的圖象(

)A.向左平移個單位 B.向右平移個單位C.向右平移個單位 D.向左平移個單位參考答案:C試題分析:因為,所以只需將函數(shù)的圖象右移個單位即得函數(shù)的圖象,關(guān)系C。考點:本題主要考查三角函數(shù)圖象的變換,誘導(dǎo)公式的應(yīng)用。點評:簡單題,函數(shù)圖象左右平移變換中,遵循“左加右減”。10.過點P(2,1)且被圓C:x2+y2–2x+4y=0截得弦長最長的直線l的方程是(

)(A)3x–y–5=0

(B)3x+y–7=0(C)x–3y+5=0

(D)x+3y–5=0參考答案:A略二、填空題:本大題共7小題,每小題4分,共28分11.設(shè)是等差數(shù)列的前項和,若,則___________。參考答案:512.若正實數(shù)a,b滿足,則ab的最大值為__________.參考答案:【分析】可利用基本不等式求的最大值.【詳解】因為都是正數(shù),由基本不等式有,所以即,當(dāng)且僅當(dāng)時等號成立,故的最大值為.【點睛】應(yīng)用基本不等式求最值時,需遵循“一正二定三相等”,如果原代數(shù)式中沒有積為定值或和為定值,則需要對給定的代數(shù)變形以產(chǎn)生和為定值或積為定值的局部結(jié)構(gòu).求最值時要關(guān)注取等條件的驗證.13.若角α是第三象限角,則角的終邊在

.參考答案:第二或第四象限,第一或第二象限或終邊在y軸的正半軸上14.函數(shù)的圖像過定點

.參考答案:(1,2)當(dāng)時,,所以過定點。

15.設(shè)a>1,若對于任意的x∈[a,2a],都有y∈[a,a2]滿足方程logax+logay=3,則a的取值范圍是.參考答案:[2,+∞)【考點】對數(shù)的運算性質(zhì).【專題】計算題.【分析】先由方程logax+logay=3解出y,轉(zhuǎn)化為函數(shù)的值域問題求解.【解答】解:易得,在[a,2a]上單調(diào)遞減,所以,故?a≥2故答案為[2,+∝).【點評】本題考查對數(shù)式的運算、反比例函數(shù)的值域、集合的關(guān)系等問題,難度不大.注意函數(shù)和方程思想的應(yīng)用.16.函數(shù)的值域為

參考答案:17.在中,,則角的最小值是

.參考答案:

三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(本題滿分10分)如圖,在正方體中,、、分別是、、的中點.求證:平面∥平面.

參考答案:證明:、分別是、的中點,∥又平面,平面∥平面四邊形為,∥又平面,平面∥平面,

,平面∥平面

略19.已知函數(shù),對任意的,都有成立;(1)求的值;(2)若,,在區(qū)間上的最小值為2,求的值;(3)若函數(shù)取得最小值0,且對任意,不等式恒成立,求函數(shù)的解析式.參考答案:解:(1)由有整理即得:上式對于任意都成立,可得…………………(4分)(2)由(1)知:,又,可求得二次函數(shù)的對稱軸為:;當(dāng)時,則,此時函數(shù)在上為減函數(shù),,解得又由,可得當(dāng)時,則,此時,,故不符合題意;當(dāng)時,此時函數(shù)在上為增函數(shù),,解得又由,可得綜上:……………(9分)(3)

由(1),可設(shè)函數(shù)取得最小值0,,即得:方法一:由題:對任意,不等式恒成立;也即:恒成立;不等式(1)恒成立,可得,解得:不等式(2)恒成立,恒成立,可得:綜合可得:方法二:對任意,不等式恒成立時,有,即,,解得此時經(jīng)檢驗:對任意,不等式恒成立;……………………(13分)

略20.(本小題12分)已知函數(shù)是定義在上的偶函數(shù),已知時,.(1)畫出偶函數(shù)的圖象;(2)根據(jù)圖象,寫出的單調(diào)區(qū)間;同時寫出函數(shù)的值域.

參考答案:(1)21.已知函數(shù)(1)當(dāng),且時,求的值;(2)是否存在實數(shù)使得的定義域和值域都是,若存在求出;若不存在,請說明理由;(3)若存在實數(shù)使得的定義域是,值域,求的范圍。參考答案:(1)

(2)

綜上不存在這樣的a,b(3)

,利用韋達(dá)定理解得

,經(jīng)檢驗不成立

綜上,存在,當(dāng),使得題目條件成立22.已知函數(shù)f(x)=4sin2(+)?sinx+(cosx+sinx)(cosx﹣sinx)﹣1.(1)化簡f(x);(2)常數(shù)ω>0,若函數(shù)y=f(ωx)在區(qū)間上是增函數(shù),求ω的取值范圍;(3)若函數(shù)g(x)=在的最大值為2,求實數(shù)a的值.參考答案:【考點】三角函數(shù)中的恒等變換應(yīng)用;函數(shù)與方程的綜合運用.【分析】(1)使用降次公式和誘導(dǎo)公式化簡4sin2(+),使用平方差公式和二倍角公式化簡(cosx+sinx)(cosx﹣sinx);(2)求出f(ωx)的包含0的增區(qū)間U,令[﹣,]?U,列出不等式組解出ω;(3)求出g(x)解析式,判斷g(x)的最大值,列方程解出a.【解答】解:(1)f(x)=2[1﹣cos(+x)]?sinx+cos2x﹣sin2x﹣1=(2+2sinx)?sinx+1﹣2sin2x﹣1=2sinx.(2)∵f(ωx)=2sinωx,由≤ωx≤,解得﹣+≤x≤+,∴f(ωx)的遞增區(qū)間為[﹣+,+],k∈Z.∵f(ωx)在[﹣,]上是增函數(shù),∴當(dāng)k=0時,有,∴,解得,∴ω的取值范圍是(0,].(3)g(x)=sin2x+asinx﹣acosx﹣a﹣1,令sinx﹣cosx=t,則sin2x=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論