版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣東省佛山市里水中學(xué)2022-2023學(xué)年高三數(shù)學(xué)文下學(xué)期期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.若直線l1:(t為參數(shù))與直線l2:(s為參數(shù))垂直,則k的值是(
)A.1 B.﹣1 C.2 D.﹣2參考答案:B【考點(diǎn)】參數(shù)方程化成普通方程.【專題】方程思想;綜合法;坐標(biāo)系和參數(shù)方程.【分析】將直線l1與直線l2化為一般直線方程,然后再根據(jù)垂直關(guān)系求解即可.【解答】解:∵直線l1:(t為參數(shù))∴y﹣2=﹣(x﹣1),直線l2:(s為參數(shù))∴2x+y=1,∵兩直線垂直,∴﹣×(﹣2)=﹣1,得k=﹣1,故選:B.【點(diǎn)評(píng)】此題考查參數(shù)方程與普通方程的區(qū)別和聯(lián)系,兩者要會(huì)互相轉(zhuǎn)化,根據(jù)實(shí)際情況選擇不同的方程進(jìn)行求解,這也是每年高考必考的熱點(diǎn)問題.2.正三棱錐S─ABC內(nèi)接于球O,其底面邊長是,側(cè)棱長是4,則球O的體積是(
) A. B. C. D.參考答案:D略3.已知函數(shù)①②;③;④。其中對(duì)于定義域內(nèi)的任意一個(gè)自變量,都存在唯一的自變量,使
成立的函數(shù)為
A.①③④
B.②④
C.①③
D.③參考答案:D4.為如圖所示的程序框圖中輸出的結(jié)果,則化簡的結(jié)果是(
)A.
B.
C.
D.參考答案:C略5.已知,則的值為(
)A.
B.
C.
D.參考答案:C6.已知一只螞蟻在圓:x2+y2=1的內(nèi)部任意隨機(jī)爬行,若不考慮螞蟻的大小,則某時(shí)刻該螞蟻爬行在區(qū)域|x|+|y|≤1內(nèi)的概率是()A、B、C、D、參考答案:A7.方程log2x+x=2的解所在的區(qū)間為()A.(0.5,1) B.(1,1.5) C.(1.5,2) D.(2,2.5)參考答案:B【考點(diǎn)】函數(shù)零點(diǎn)的判定定理.【分析】判斷f(x)=log2x+x﹣2,在(0,+∞)上單調(diào)遞增.根據(jù)函數(shù)的零點(diǎn)存在性定理得出:f(1)?f(1.5)<0,可得出f(x)的零點(diǎn)在(1,1.5)區(qū)間內(nèi),即可得出答案.【解答】解:設(shè)f(x)=log2x+x﹣2,在(0,+∞)上單調(diào)遞增.∵f(1)=0+1﹣2=﹣1<0,f(1.5)=log21.5﹣0.5=log21.5﹣log2>0∴根據(jù)函數(shù)的零點(diǎn)存在性定理得出:f(x)的零點(diǎn)在(1,1.5)區(qū)間內(nèi)∴方程log2x+x=2的解所在的區(qū)間為(1,1.5)故選:B.8.設(shè)是定義在R上的恒不為零的函數(shù),對(duì)任意,都有,
,若,且,則數(shù)列的前n項(xiàng)和為為
(
)
A.
B.
C.
D.參考答案:D9.已知函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)可導(dǎo),且x0∈(a,b)則
的值為(
)A、
B、
C、
D、0參考答案:B10.設(shè)集合,則
(
)A.{1,3}
B.{2,4}
C.{1,2,3,5}
D.{2,5}參考答案:A二、填空題:本大題共7小題,每小題4分,共28分11.設(shè)數(shù)列{an}的通項(xiàng)公式為,,該數(shù)列中個(gè)位數(shù)字為0的項(xiàng)按從小到大的順序排列構(gòu)成數(shù)列{bn},則被7除所得的余數(shù)為
.參考答案:412.已知集合A={-1,1},B={x|ax+1=0},若B?A,則實(shí)數(shù)a的所有可能取值的集合為_________.參考答案:{-1,1}13.對(duì)于總有成立,則的取值范圍是
參考答案:14.若將函數(shù)y=cos(2x)的圖象向左平移個(gè)單位長度,則平移后的函數(shù)對(duì)稱軸為.參考答案:【考點(diǎn)】函數(shù)y=Asin(ωx+φ)的圖象變換.【分析】根據(jù)三角函數(shù)平移的性質(zhì),將函數(shù)y=cos2x的圖象向左平移個(gè)單位長度可得:y=cos[2(x+)]=cos(2x+),根據(jù)余弦函數(shù)的性質(zhì)可得:對(duì)稱軸方程為:2x+=kπ,(k∈Z)化簡即可得到對(duì)稱軸方程.【解答】解:由題意,函數(shù)y=cos(2x的)圖象向左平移個(gè)單位長度,可得:y=cos[2(x+)]=cos(2x+),∴由2x+=kπ(k∈Z),解得:x=﹣(k∈Z),故答案為:.15.已知等比數(shù)列{an}滿足,且,則=_______.參考答案:8【分析】先求出的值,再求的值.【詳解】∵∴,則=2∴.故答案為:8【點(diǎn)睛】本題主要考查等比中項(xiàng)的應(yīng)用,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.16.某幾何體的三視圖如圖所示,則該幾何體的體積等于______。
參考答案:該幾何體是底面是直角梯形,高為的直四棱柱,幾何體的的體積是。
17.曲線在點(diǎn)處的切線方程為____________.參考答案:略三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga,記F(x)=2f(x)+g(x).(1)求函數(shù)F(x)的定義域D及其零點(diǎn);(2)若關(guān)于x的方程F(x)﹣m=0在區(qū)間[0,1)內(nèi)僅有一解,求實(shí)數(shù)m的取值范圍.參考答案:【考點(diǎn)】函數(shù)的零點(diǎn)與方程根的關(guān)系;根的存在性及根的個(gè)數(shù)判斷.【分析】(1)可得F(x)的解析式,由可得定義域,令F(x)=0,由對(duì)數(shù)函數(shù)的性質(zhì)可解得x的值,注意驗(yàn)證即可;(2)方程可化為,設(shè)1﹣x=t∈(0,1],構(gòu)造函數(shù),可得單調(diào)性和最值,進(jìn)而可得嗎的范圍.【解答】解:(1)F(x)=2f(x)+g(x)=(a>0且a≠1)由,可解得﹣1<x<1,所以函數(shù)F(x)的定義域?yàn)椋ī?,1)令F(x)=0,則…(*)
方程變?yōu)?,即(x+1)2=1﹣x,即x2+3x=0解得x1=0,x2=﹣3,經(jīng)檢驗(yàn)x=﹣3是(*)的增根,所以方程(*)的解為x=0即函數(shù)F(x)的零點(diǎn)為0.(2)方程可化為=,故,設(shè)1﹣x=t∈(0,1]函數(shù)在區(qū)間(0,1]上是減函數(shù)當(dāng)t=1時(shí),此時(shí)x=0,ymin=5,所以am≥1①若a>1,由am≥1可解得m≥0,②若0<a<1,由am≥1可解得m≤0,故當(dāng)a>1時(shí),實(shí)數(shù)m的取值范圍為:m≥0,當(dāng)0<a<1時(shí),實(shí)數(shù)m的取值范圍為:m≤019..(本小題滿分14分)
已知函數(shù)f(x)=x2(x-a)+bx
(Ⅰ)若a=3,b=l,求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若b=a+,函數(shù)f(x)在(1,+)上既能取到極大值又能取到極小值,求a的取值范圍;
(Ⅲ)若b=0,不等式1nx+1≥0對(duì)任意的
恒成立,求a的取值范圍,參考答案:略20.已知定義域?yàn)镽的函數(shù)是奇函數(shù).(1)求的值;(2)用定義證明在上為減函數(shù).(3)若對(duì)于任意,不等式恒成立,求的范圍.參考答案:(1)
經(jīng)檢驗(yàn)符合題意.
(2)任取
則=略21.如圖,三棱柱ABC﹣A1B1C1中,側(cè)面BB1C1C為菱形,AC=AB1.(1)證明:AB⊥B1C;(2)若,平面AB1C⊥平面BB1C1C,直線AB與平面BB1C1C所成角為,求點(diǎn)B1到平面ABC的距離.參考答案:【考點(diǎn)】點(diǎn)、線、面間的距離計(jì)算;直線與平面垂直的性質(zhì).【分析】(1)連結(jié)BC1交B1C于O,連結(jié)AO,說明B1C⊥BC1,AO⊥B1C,證明B1C⊥平面ABO,即可推出AB⊥B1C.(2)證明AO⊥平面BB1C1C.得到,求出,設(shè)B1到平面ABC的距離為h,利用等體積法,轉(zhuǎn)化求解即可.【解答】解:(1)證明:連結(jié)BC1交B1C于O,連結(jié)AO,在菱形BB1C1C中,B1C⊥BC1,∵AC=AB1,O為B1C中點(diǎn),∴AO⊥B1C,又∵AO∩BC1=0,∴B1C⊥平面ABO,∴AB⊥B1C.(2)∵平面AB1C⊥平面BB1C1C,平面AB1C∩平面BB1C1C=B1C,又AO⊥B1C,∴AO⊥平面BB1C1C.∴,∵BB1=a,,∴,故.∴,∵△ABC為等腰三角形,∴.設(shè)B1到平面ABC的距離為h,則,∴.22.(12分)如圖,已知四邊形ABCD和BCGE均為直角梯形,AD∥BC,CE∥BG且∠BCD=∠BCE=,平面ABCD⊥平面BCGE,BC=CD=CE=2AD=2BG=2.(1)求證:AG∥平面BDE;(2)求三棱錐G﹣BDE的體積.參考答案:【考點(diǎn)】棱柱、棱錐、棱臺(tái)的體積;直線與平面平行的判定.【分析】(1)由題意可證CD⊥CB,CD⊥CE,CB⊥CE,所以以C為原點(diǎn),CD為x軸,CB為y軸,CE為z軸,建立空間直角坐標(biāo)系,求出直線AG的方向向量與平面BDE的法向量,由=0證之即可;(2)應(yīng)用等體積轉(zhuǎn)換求體積即可,即VG﹣DEF=VD﹣EFG=求之.【解答】證明:(1)∵平面ABCD⊥平面BCEG,平面ABCD∩平面BCEG=BC,CE⊥BC,CE?平面BCEG,∴EC⊥平面ABCD,以C為原點(diǎn),CD為x軸,CB為y軸,CE為z軸,建立空間直角坐標(biāo)系,則B(0,2,0),D(2,0,0),E(0,0,2),A(2,1,0),G(0,2,1),設(shè)平面BDE的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國苧麻紗線行業(yè)發(fā)展監(jiān)測及投資前景預(yù)測報(bào)告
- 連接管路項(xiàng)目可行性研究報(bào)告
- 2025年中國線性驅(qū)動(dòng)系統(tǒng)行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y方向研究報(bào)告
- 表面活性劑新建項(xiàng)目可行性研究報(bào)告建議書申請(qǐng)格式范文
- 汽油發(fā)動(dòng)機(jī)項(xiàng)目可行性研究報(bào)告
- 智能酸堿濃度計(jì)行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報(bào)告
- 2024-2029全球及中國豪華門行業(yè)市場調(diào)研及投資前景分析報(bào)告
- 童外貿(mào)鞋行業(yè)深度研究報(bào)告
- 中國透明墻紙膠行業(yè)市場深度分析及投資戰(zhàn)略研究報(bào)告
- 浙江省嘉興市平湖市2024年中考模擬語文試卷含答案
- 移動(dòng)發(fā)布推介會(huì)服務(wù)方案
- 供應(yīng)商產(chǎn)品質(zhì)量監(jiān)督管理制度
- 單位工程、分部工程、分項(xiàng)工程及檢驗(yàn)批劃分方案
- 器樂Ⅰ小提琴課程教學(xué)大綱
- 主債權(quán)合同及不動(dòng)產(chǎn)抵押合同(簡化版本)
- 服裝廠安全生產(chǎn)責(zé)任書
- JGJ202-2010建筑施工工具式腳手架安全技術(shù)規(guī)范
- 液壓爬模系統(tǒng)作業(yè)指導(dǎo)書
- 2018-2019學(xué)年北京市西城區(qū)人教版六年級(jí)上冊(cè)期末測試數(shù)學(xué)試卷
- SFC15(發(fā)送)和SFC14(接收)組態(tài)步驟
- LX電動(dòng)單梁懸掛說明書
評(píng)論
0/150
提交評(píng)論