版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
關(guān)于線性代數(shù)概念的幾何意義第一頁(yè),共三十頁(yè),2022年,8月28日主要內(nèi)容二元、三元線性方程組的幾何意義二階、三階行列式的幾何意義平面上線性變換的幾何意義二階矩陣特征值的幾何意義中向量組的線性相關(guān)性的幾何意義第二頁(yè),共三十頁(yè),2022年,8月28日二元、三元線性方程組的幾何意義
二元一次方程在幾何上表示的是一條直線,則含兩個(gè)二元一次方程的方程組在幾何上則表示兩條直線的位置關(guān)系:
相交====〉有唯一解平行====〉無(wú)解重合====〉無(wú)窮多解第三頁(yè),共三十頁(yè),2022年,8月28日
例1
求解下列四個(gè)線性方程組第四頁(yè),共三十頁(yè),2022年,8月28日
以方程組(1)為例:在MATLAB的M文件編輯器中,輸入
symsx1x2
%定義x1、x2為符號(hào)變量
U1=rref([1,2,5;2,-3,-4])
%把增廣矩陣通過(guò)初等行變換
%變?yōu)樽詈?jiǎn)階梯矩陣
subplot(2,2,1)
%準(zhǔn)備畫(huà)2×2個(gè)圖形中的第一個(gè)
ezplot('x1+2*x2=5')
%繪制直線x1+2*x2=5
holdon
%保留原來(lái)圖形
ezplot('2*x1-3*x2=-4')
%再繪制直線2*x1-3*x2=-4
title('x1+2*x2=52*x1-3*x2=-4')
%在圖上標(biāo)注x1+2*x2=52*x1-3*x2=-4
gridon
%顯示網(wǎng)格第五頁(yè),共三十頁(yè),2022年,8月28日繪制圖形如圖1所示:第六頁(yè),共三十頁(yè),2022年,8月28日
方程組(1)的解為;
方程組(2)的通解為:;
方程組(3)和方程組(4)這兩個(gè)方程組無(wú)解。從運(yùn)行結(jié)果可以看出:第七頁(yè),共三十頁(yè),2022年,8月28日
方程組(1)的兩條直線有一個(gè)交點(diǎn),故有唯一解(適定);方程組(2)的兩條直線重合,則有無(wú)窮組解(欠定);方程組(3)的兩條直線相平行,永遠(yuǎn)沒(méi)有交點(diǎn),即無(wú)解;方程組(4)的三條直線不共點(diǎn),則也無(wú)解(超定),可求最小二乘解。從圖1中可以形象地看出:AX=b最小二乘解命令:x=pinv(A)*b
x=A\b第八頁(yè),共三十頁(yè),2022年,8月28日
三個(gè)三元一次方程構(gòu)成的方程組:若三個(gè)平面只有一個(gè)交點(diǎn),即方程組有唯一解;若三個(gè)平面相交于一直線,即方程組有無(wú)窮多解;若三個(gè)平面沒(méi)有交點(diǎn)或交線,即方程組無(wú)解。
三元一次方程組的幾何表示
第九頁(yè),共三十頁(yè),2022年,8月28日
例2
求解下列線性方程組,并畫(huà)出三維圖形來(lái)表示解的情況。第十頁(yè),共三十頁(yè),2022年,8月28日利用MATLAB的M文件編輯器繪圖可得:
圖2
三元線性方程組解的幾何意義第十一頁(yè),共三十頁(yè),2022年,8月28日方程組(1)的解為三個(gè)平面的交點(diǎn),故該方程組有唯一解;方程組(2)的三個(gè)平面剛好相交于同一條直線,該齊次線性方程組有無(wú)窮多解,且其對(duì)應(yīng)的解空間是一維的;方程組(3)的三個(gè)平面沒(méi)有共同的交點(diǎn),即方程組無(wú)解;方程組(4)也無(wú)解。從圖2中可以看出:第十二頁(yè),共三十頁(yè),2022年,8月28日
二階、三階行列式的幾何意義
二維情形:
在平面上有一個(gè)平行四邊形OACB,A、B兩點(diǎn)的坐標(biāo)分別為:、,如下圖所示,求平行四邊形OACB的面積。
分析:過(guò)點(diǎn)A做x軸垂線,交x軸于點(diǎn)E;過(guò)點(diǎn)B做平行x軸直線與過(guò)點(diǎn)C做平行y軸直線相交于點(diǎn)D。顯然可以得到三角形CDB和三角形AEO全等,則有:第十三頁(yè),共三十頁(yè),2022年,8月28日
根據(jù)二階行列式的定義,該平行四邊形的面積剛好是以A、B兩點(diǎn)坐標(biāo)所構(gòu)成的二階行列式:二階行列式的幾何意義
一般情況下也可以證明:過(guò)原點(diǎn)的兩條直線(向量),如構(gòu)成的一個(gè)平行四邊形的面積為A、B兩點(diǎn)坐標(biāo)所構(gòu)成的二階行列式的絕對(duì)值。第十四頁(yè),共三十頁(yè),2022年,8月28日
三維情形已知三個(gè)向量
由這三個(gè)向量所構(gòu)成的平行六面體的體積即為
三階行列式的絕對(duì)值(如圖)
第十五頁(yè),共三十頁(yè),2022年,8月28日平面上線性變換(y=Ax)的幾何意義例3已知向量及矩陣
請(qǐng)分析經(jīng)過(guò)線性變換后,向量與原向量的幾何關(guān)系。
第十六頁(yè),共三十頁(yè),2022年,8月28日繪制圖形如下圖所示:
圖3線性變換的幾何意義第十七頁(yè),共三十頁(yè),2022年,8月28日
例4.設(shè)二維平面上第一象限中的一個(gè)單位方塊,其四個(gè)頂點(diǎn)的數(shù)據(jù)可寫(xiě)成
把不同的A矩陣作用于此組數(shù)據(jù),可以得到多種多樣的結(jié)果Ci=
AiB。令B=(X1,X2,X3,X4),則
AiB=Ai(X1,X2,X3,X4)=(AiX1,AiX2,AiX3,AiX4)第十八頁(yè),共三十頁(yè),2022年,8月28日
用MATLAB程序進(jìn)行計(jì)算,并畫(huà)出B及C圖形:
B=[0,1,1,0;0,0,1,1]; subplot(2,3,1),fill([B(1,:),0],[B(2,:),0],'r') A1=[-1,0;0,1],C1=A1*B subplot(2,3,2),fill([C1(1,:),0],[C1(2,:),0],'g')第十九頁(yè),共三十頁(yè),2022年,8月28日
繪制幾何圖形可得:第二十頁(yè),共三十頁(yè),2022年,8月28日對(duì)二維空間(平面),行列式的幾何意義實(shí)際上是兩個(gè)向量所構(gòu)成的平行四邊形的面積。一個(gè)變換所造成的圖形的面積變化,取決于該變換矩陣的行列式,A1,A4和A5的行列式絕對(duì)值都是1,所以變換后圖形的面積不改變。而A2和A3的行列式分別為1.5和0.5,變換后圖形的面積的增加或減少倍數(shù)等于對(duì)應(yīng)行列式的絕對(duì)值。平面上線性變換的幾何意義第二十一頁(yè),共三十頁(yè),2022年,8月28日?qǐng)D像變換中的示例在二維的圖像變換模型中,最基本的圖像變換有平移、旋轉(zhuǎn)、縮放(包括各向同性和各向異性)、反射和錯(cuò)切。由這些基本的圖像變換組合,可以得到剛性變換、相似變換、仿射變換、透視變換等復(fù)合變換。第二十二頁(yè),共三十頁(yè),2022年,8月28日二階矩陣特征值的幾何意義
例5.已知矩陣求它們的特征值和特征向量,并繪制特征向量圖,分析其幾何意義。解:在MATLAB命令窗口輸入:
A1=[-1,3;2,5];[V1,D1]=eig(A1)eigshow(A1)A2=[1,-2;-1,5];[V2,D2]=eig(A2)eigshow(A2)
A3=[1,2;2,4];[V3,D3]=eig(A3)eigshow(A3)A4=[2,-1;3,2];[V4,D4]=eig(A4)eigshow(A4)第二十三頁(yè),共三十頁(yè),2022年,8月28日
當(dāng)用鼠標(biāo)拖動(dòng)向量順時(shí)針旋轉(zhuǎn)時(shí),也開(kāi)始旋轉(zhuǎn)。向量的軌跡為一個(gè)圓,而向量的軌跡一般情況為一個(gè)橢圓。同理,可以對(duì)其它三個(gè)矩陣進(jìn)行同樣的操作,繪制圖形如圖5所示。繪制圖形如圖所示圖5特征值及其演示第二十四頁(yè),共三十頁(yè),2022年,8月28日第二十五頁(yè),共三十頁(yè),2022年,8月28日
函數(shù)eigshow(A)描述了向量隨向量的變換關(guān)系:當(dāng)向量在旋轉(zhuǎn)的過(guò)程中,如果向量與向量共線(包括同向和反向),則有等式為一實(shí)數(shù)乘子,為正表示兩個(gè)向量同向,為負(fù)表示兩個(gè)向量反向。人們把向量與向量共線的位置稱(chēng)為特征位置,其中實(shí)數(shù)就稱(chēng)為矩陣的特征值,而此時(shí)的即為矩陣的屬于的特征向量。
特征值表示線性變換Ax在特征向量x方向上的放大(縮小)量。第二十六頁(yè),共三十頁(yè),2022年,8月28日針對(duì)矩陣,當(dāng)向量順時(shí)針旋轉(zhuǎn)時(shí),向量逆時(shí)針旋轉(zhuǎn),則矩陣存在(一正一負(fù))兩個(gè)特征值(四個(gè)特征位置);針對(duì)矩陣,當(dāng)向量勻角速度順時(shí)針旋轉(zhuǎn)時(shí),向量也順時(shí)針旋轉(zhuǎn),其角速度一會(huì)變大,一會(huì)變小,存在四個(gè)特征位置(兩個(gè)特征值均為正);針對(duì)矩陣,當(dāng)向量勻角速度順時(shí)針旋轉(zhuǎn)時(shí),向量沿一條過(guò)圓心的直線運(yùn)動(dòng),此時(shí)矩陣有一個(gè)特征值為零;針對(duì)矩陣,當(dāng)向量順時(shí)針旋轉(zhuǎn)時(shí),向量也順時(shí)針旋轉(zhuǎn),但它永遠(yuǎn)也追不上向量,它們之間總保持著一定的角度,則矩陣沒(méi)有實(shí)特征值。第二十七頁(yè),共三十頁(yè),2022年,8月2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 機(jī)器人研發(fā)實(shí)驗(yàn)室裝修合同
- 服裝批發(fā)市場(chǎng)運(yùn)輸居間合同
- 辦公室裝修合同終止協(xié)議書(shū)
- 化工原料采購(gòu)居間合同模板
- 農(nóng)業(yè)生產(chǎn)環(huán)境保護(hù)標(biāo)準(zhǔn)體系建立方案
- 基于大數(shù)據(jù)的電商購(gòu)物體驗(yàn)提升方案
- 質(zhì)量追溯數(shù)據(jù)庫(kù)建立與維護(hù)方案
- 建筑防水施工合同
- 建筑設(shè)計(jì)與施工管理指南
- 軟件測(cè)試流程與規(guī)范指南
- 07J912-1變配電所建筑構(gòu)造
- 人教版小學(xué)數(shù)學(xué)一年級(jí)下冊(cè)第1-4單元教材分析
- JTS-215-2018碼頭結(jié)構(gòu)施工規(guī)范
- 財(cái)務(wù)實(shí)習(xí)生合同
- 2024年長(zhǎng)沙衛(wèi)生職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)含答案
- 地質(zhì)災(zāi)害危險(xiǎn)性評(píng)估的基本知識(shí)
- (正式版)SHT 3075-2024 石油化工鋼制壓力容器材料選用規(guī)范
- 出租房房東消防培訓(xùn)
- 2024年度-小學(xué)語(yǔ)文教師經(jīng)驗(yàn)交流
- 麻醉科質(zhì)量與安全管理小組工作計(jì)劃
- 認(rèn)識(shí)比例尺人教版課件
評(píng)論
0/150
提交評(píng)論