版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(共10小題,每小題3分,共30分)1.中國(guó)古代人民很早就在生產(chǎn)生活中發(fā)現(xiàn)了許多有趣的數(shù)學(xué)問(wèn)題,其中《孫子算經(jīng)》中有個(gè)問(wèn)題:今有三人共車(chē),二車(chē)空;二人共車(chē),九人步,問(wèn)人與車(chē)各幾何?這道題的意思是:今有若干人乘車(chē),每三人乘一車(chē),最終剩余2輛車(chē),若每2人共乘一車(chē),最終剩余9個(gè)人無(wú)車(chē)可乘,問(wèn)有多少人,多少輛車(chē)?如果我們?cè)O(shè)有輛車(chē),則可列方程()A. B.C. D.2.已知圓內(nèi)接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.3.如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(-2,0)、(0,1),⊙C的圓心坐標(biāo)為(0,-1),半徑為1.若D是⊙C上的一個(gè)動(dòng)點(diǎn),射線AD與y軸交于點(diǎn)E,則△ABE面積的最大值是A.3 B. C. D.44.如圖,AB是⊙O的切線,半徑OA=2,OB交⊙O于C,∠B=30°,則劣弧的長(zhǎng)是()A.π B. C.π D.π5.濰坊市2018年政府工作報(bào)告中顯示,濰坊社會(huì)經(jīng)濟(jì)平穩(wěn)運(yùn)行,地區(qū)生產(chǎn)總值增長(zhǎng)8%左右,社會(huì)消費(fèi)品零售總額增長(zhǎng)12%左右,一般公共預(yù)算收入539.1億元,7家企業(yè)入選國(guó)家“兩化”融合貫標(biāo)試點(diǎn),濰柴集團(tuán)收入突破2000億元,榮獲中國(guó)商標(biāo)金獎(jiǎng).其中,數(shù)字2000億元用科學(xué)記數(shù)法表示為()元.(精確到百億位)A.2×1011B.2×1012C.2.0×1011D.2.0×10106.下列各數(shù)中是有理數(shù)的是()A.π B.0 C. D.7.在銀行存款準(zhǔn)備金不變的情況下,銀行的可貸款總量與存款準(zhǔn)備金率成反比例關(guān)系.當(dāng)存款準(zhǔn)備金率為7.5%時(shí),某銀行可貸款總量為400億元,如果存款準(zhǔn)備金率上調(diào)到8%時(shí),該銀行可貸款總量將減少多少億()A.20 B.25 C.30 D.358.如圖,每個(gè)小正方形的邊長(zhǎng)為1,A、B、C是小正方形的頂點(diǎn),則∠ABC的度數(shù)為()A.90° B.60° C.45° D.30°9.如圖是一個(gè)正方體展開(kāi)圖,把展開(kāi)圖折疊成正方體后,“愛(ài)”字一面相對(duì)面上的字是()A.美 B.麗 C.泗 D.陽(yáng)10.如圖,直線a,b被直線c所截,下列條件不能判定直線a與b平行的是()A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠4二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.已知關(guān)于x的二次函數(shù)y=x2-2x-2,當(dāng)a≤x≤a+2時(shí),函數(shù)有最大值1,則a的值為_(kāi)_______.12.如圖,小紅將一個(gè)正方形紙片剪去一個(gè)寬為4cm的長(zhǎng)條后,再?gòu)氖O碌拈L(zhǎng)方形紙片上剪去一個(gè)寬為5cm的長(zhǎng)條,且剪下的兩個(gè)長(zhǎng)條的面積相等.問(wèn)這個(gè)正方形的邊長(zhǎng)應(yīng)為多少厘米?設(shè)正方形邊長(zhǎng)為xcm,則可列方程為_(kāi)____.13.某市政府為了改善城市容貌,綠化環(huán)境,計(jì)劃經(jīng)過(guò)兩年時(shí)間,使綠地面積增加44%,則這兩年平均綠地面積的增長(zhǎng)率為_(kāi)_____.14.如圖,在中,AB為直徑,點(diǎn)C在上,的平分線交于D,則______15.如圖,拋物線y=ax2+bx+c與x軸相交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),頂點(diǎn)在折線M﹣P﹣N上移動(dòng),它們的坐標(biāo)分別為M(﹣1,4)、P(3,4)、N(3,1).若在拋物線移動(dòng)過(guò)程中,點(diǎn)A橫坐標(biāo)的最小值為﹣3,則a﹣b+c的最小值是_____.16.如果兩個(gè)相似三角形對(duì)應(yīng)邊上的高的比為1:4,那么這兩個(gè)三角形的周長(zhǎng)比是___.三、解答題(共8題,共72分)17.(8分)如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連接DE.若DE:AC=3:5,求的值.18.(8分)先化簡(jiǎn),再求值:,其中x滿足x2﹣x﹣1=1.19.(8分)中央電視臺(tái)的“中國(guó)詩(shī)詞大賽”節(jié)目文化品位高,內(nèi)容豐富.某班模擬開(kāi)展“中國(guó)詩(shī)詞大賽”比賽,對(duì)全班同學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)后分為“A優(yōu)秀”、“B一般”、“C較差”、“D良好”四個(gè)等級(jí),并根據(jù)成績(jī)繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,回答下列問(wèn)題:(1)本班有多少同學(xué)優(yōu)秀?(2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖.(3)學(xué)校預(yù)全面推廣這個(gè)比賽提升學(xué)生的文化素養(yǎng),估計(jì)該校3000人有多少人成績(jī)良好?20.(8分)如圖,△ABC中,D是AB上一點(diǎn),DE⊥AC于點(diǎn)E,F(xiàn)是AD的中點(diǎn),F(xiàn)G⊥BC于點(diǎn)G,與DE交于點(diǎn)H,若FG=AF,AG平分∠CAB,連接GE,GD.求證:△ECG≌△GHD;21.(8分)為了解朝陽(yáng)社區(qū)歲居民最喜歡的支付方式,某興趣小組對(duì)社區(qū)內(nèi)該年齡段的部分居民展開(kāi)了隨機(jī)問(wèn)卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:求參與問(wèn)卷調(diào)查的總?cè)藬?shù).補(bǔ)全條形統(tǒng)計(jì)圖.該社區(qū)中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).22.(10分)計(jì)算(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°;23.(12分)計(jì)算:﹣(﹣2016)0+|﹣3|﹣4cos45°.24.某校對(duì)六至九年級(jí)學(xué)生圍繞“每天30分鐘的大課間,你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫(xiě)一項(xiàng))”的問(wèn)題,對(duì)在校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù).如圖是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問(wèn)題:該校對(duì)多少學(xué)生進(jìn)行了抽樣調(diào)查?本次抽樣調(diào)查中,最喜歡籃球活動(dòng)的有多少?占被調(diào)查人數(shù)的百分比是多少?若該校九年級(jí)共有200名學(xué)生,如圖是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)估計(jì)全校六至九年級(jí)學(xué)生中最喜歡跳繩活動(dòng)的人數(shù)約為多少?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據(jù)每三人乘一車(chē),最終剩余2輛車(chē),每2人共乘一車(chē),最終剩余1個(gè)人無(wú)車(chē)可乘,進(jìn)而表示出總?cè)藬?shù)得出等式即可.【詳解】設(shè)有x輛車(chē),則可列方程:
3(x-2)=2x+1.
故選:A.【點(diǎn)睛】此題主要考查了由實(shí)際問(wèn)題抽象出一元一次方程,正確表示總?cè)藬?shù)是解題關(guān)鍵.2、B【解析】
根據(jù)題意畫(huà)出圖形,連接AO并延長(zhǎng)交BC于點(diǎn)D,則AD⊥BC,設(shè)OD=x,由三角形重心的性質(zhì)得AD=3x,利用銳角三角函數(shù)表示出BD的長(zhǎng),由垂徑定理表示出BC的長(zhǎng),然后根據(jù)面積法解答即可.【詳解】如圖,連接AO并延長(zhǎng)交BC于點(diǎn)D,則AD⊥BC,設(shè)OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內(nèi)接正三邊形的邊心距為1,故選B.【點(diǎn)睛】本題考查正多邊形和圓,三角形重心的性質(zhì),垂徑定理,銳角三角函數(shù),面積法求線段的長(zhǎng),解答本題的關(guān)鍵是明確題意,求出相應(yīng)的圖形的邊心距.3、B【解析】試題分析:解:當(dāng)射線AD與⊙C相切時(shí),△ABE面積的最大.連接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,連接CD,設(shè)EF=x,∴DE2=EF?OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故選B.考點(diǎn):1.切線的性質(zhì);2.三角形的面積.4、C【解析】
由切線的性質(zhì)定理得出∠OAB=90°,進(jìn)而求出∠AOB=60°,再利用弧長(zhǎng)公式求出即可.【詳解】∵AB是⊙O的切線,∴∠OAB=90°,∵半徑OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧AC?的長(zhǎng)是:=,故選:C.【點(diǎn)睛】本題考查了切線的性質(zhì),圓周角定理,弧長(zhǎng)的計(jì)算,解題的關(guān)鍵是先求出角度再用弧長(zhǎng)公式進(jìn)行計(jì)算.5、C【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】2000億元=2.0×1.
故選:C.【點(diǎn)睛】考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.6、B【解析】【分析】根據(jù)有理數(shù)是有限小數(shù)或無(wú)限循環(huán)小數(shù),結(jié)合無(wú)理數(shù)的定義進(jìn)行判斷即可得答案.【詳解】A、π是無(wú)限不循環(huán)小數(shù),屬于無(wú)理數(shù),故本選項(xiàng)錯(cuò)誤;B、0是有理數(shù),故本選項(xiàng)正確;C、是無(wú)理數(shù),故本選項(xiàng)錯(cuò)誤;D、是無(wú)理數(shù),故本選項(xiàng)錯(cuò)誤,故選B.【點(diǎn)睛】本題考查了實(shí)數(shù)的分類,熟知有理數(shù)是有限小數(shù)或無(wú)限循環(huán)小數(shù)是解題的關(guān)鍵.7、B【解析】設(shè)可貸款總量為y,存款準(zhǔn)備金率為x,比例常數(shù)為k,則由題意可得:,,∴,∴當(dāng)時(shí),(億),∵400-375=25,∴該行可貸款總量減少了25億.故選B.8、C【解析】試題分析:根據(jù)勾股定理即可得到AB,BC,AC的長(zhǎng)度,進(jìn)行判斷即可.試題解析:連接AC,如圖:根據(jù)勾股定理可以得到:AC=BC=,AB=.∵()1+()1=()1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故選C.考點(diǎn):勾股定理.9、D【解析】
正方體的表面展開(kāi)圖,相對(duì)的面之間一定相隔一個(gè)正方形,根據(jù)這一特點(diǎn)作答.【詳解】解:正方體的表面展開(kāi)圖,相對(duì)的面之間一定相隔一個(gè)正方形,“愛(ài)”字一面相對(duì)面上的字是“陽(yáng)”;故本題答案為:D.【點(diǎn)睛】本題主要考查了正方體相對(duì)兩個(gè)面上的文字,注意正方體的空間圖形是解題的關(guān)鍵.10、D【解析】試題分析:A.∵∠1=∠3,∴a∥b,故A正確;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正確;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正確;D.∠3和∠4是對(duì)頂角,不能判斷a與b是否平行,故D錯(cuò)誤.故選D.考點(diǎn):平行線的判定.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、-1或1【解析】
利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征找出當(dāng)y=1時(shí)x的值,結(jié)合當(dāng)a≤x≤a+2時(shí)函數(shù)有最大值1,即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論.【詳解】解:當(dāng)y=1時(shí),x2-2x-2=1,
解得:x1=-1,x2=3,
∵當(dāng)a≤x≤a+2時(shí),函數(shù)有最大值1,
∴a=-1或a+2=3,即a=1.
故答案為-1或1.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及二次函數(shù)的最值,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征找出當(dāng)y=1時(shí)x的值是解題的關(guān)鍵.12、4x=5(x-4)【解析】按照面積作為等量關(guān)系列方程有4x=5(x﹣4).13、10%【解析】
本題可設(shè)這兩年平均每年的增長(zhǎng)率為x,因?yàn)榻?jīng)過(guò)兩年時(shí)間,讓市區(qū)綠地面積增加44%,則有(1+x)1=1+44%,解這個(gè)方程即可求出答案.【詳解】解:設(shè)這兩年平均每年的綠地增長(zhǎng)率為x,根據(jù)題意得,
(1+x)1=1+44%,
解得x1=-1.1(舍去),x1=0.1.
答:這兩年平均每年綠地面積的增長(zhǎng)率為10%.故答案為10%【點(diǎn)睛】此題考查增長(zhǎng)率的問(wèn)題,一般公式為:原來(lái)的量×(1±x)1=現(xiàn)在的量,增長(zhǎng)用+,減少用-.但要注意解的取舍,及每一次增長(zhǎng)的基礎(chǔ).14、1【解析】
由AB為直徑,得到,由因?yàn)镃D平分,所以,這樣就可求出.【詳解】解:為直徑,
,
又平分,
,
.
故答案為1.【點(diǎn)睛】本題考查了圓周角定理:在同圓和等圓中,同弧或等弧所對(duì)的圓周角相等,一條弧所對(duì)的圓周角是它所對(duì)的圓心角的一半同時(shí)考查了直徑所對(duì)的圓周角為90度.15、﹣1.【解析】
由題意得:當(dāng)頂點(diǎn)在M處,點(diǎn)A橫坐標(biāo)為-3,可以求出拋物線的a值;當(dāng)頂點(diǎn)在N處時(shí),y=a-b+c取得最小值,即可求解.【詳解】解:由題意得:當(dāng)頂點(diǎn)在M處,點(diǎn)A橫坐標(biāo)為-3,則拋物線的表達(dá)式為:y=a(x+1)2+4,將點(diǎn)A坐標(biāo)(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,當(dāng)x=-1時(shí),y=a-b+c,頂點(diǎn)在N處時(shí),y=a-b+c取得最小值,頂點(diǎn)在N處,拋物線的表達(dá)式為:y=-(x-3)2+1,當(dāng)x=-1時(shí),y=a-b+c=-(-1-3)2+1=-1,故答案為-1.【點(diǎn)睛】本題考查的是二次函數(shù)知識(shí)的綜合運(yùn)用,本題的核心是確定頂點(diǎn)在M、N處函數(shù)表達(dá)式,其中函數(shù)的a值始終不變.16、1:4【解析】∵兩個(gè)相似三角形對(duì)應(yīng)邊上的高的比為1∶4,∴這兩個(gè)相似三角形的相似比是1:4∵相似三角形的周長(zhǎng)比等于相似比,∴它們的周長(zhǎng)比1:4,故答案為:1:4.【點(diǎn)睛】本題考查了相似三角形的性質(zhì),相似三角形對(duì)應(yīng)邊上的高、相似三角形的周長(zhǎng)比都等于相似比.三、解答題(共8題,共72分)17、【解析】
根據(jù)翻折的性質(zhì)可得∠BAC=∠EAC,再根據(jù)矩形的對(duì)邊平行可得AB∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠DCA=∠BAC,從而得到∠EAC=∠DCA,設(shè)AE與CD相交于F,根據(jù)等角對(duì)等邊的性質(zhì)可得AF=CF,再求出DF=EF,從而得到△ACF和△EDF相似,根據(jù)相似三角形得出對(duì)應(yīng)邊成比,設(shè)DF=3x,F(xiàn)C=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根據(jù)矩形的對(duì)邊相等求出AB,然后代入進(jìn)行計(jì)算即可得解.【詳解】解:∵矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,∴CE=BC,∠BAC=∠CAE,∵矩形對(duì)邊AD=BC,∴AD=CE,設(shè)AE、CD相交于點(diǎn)F,在△ADF和△CEF中,,∴△ADF≌△CEF(AAS),∴EF=DF,∵AB∥CD,∴∠BAC=∠ACF,又∵∠BAC=∠CAE,∴∠ACF=∠CAE,∴AF=CF,∴AC∥DE,∴△ACF∽△DEF,∴,設(shè)EF=3k,CF=5k,由勾股定理得CE=,∴AD=BC=CE=4k,又∵CD=DF+CF=3k+5k=8k,∴AB=CD=8k,∴AD:AB=(4k):(8k)=.【點(diǎn)睛】本題考查了翻折變換的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理,綜合題難度較大,求出△ACF和△DEF相似是解題的關(guān)鍵,也是本題的難點(diǎn).18、2.【解析】
根據(jù)分式的運(yùn)算法則進(jìn)行計(jì)算化簡(jiǎn),再將x2=x+2代入即可.【詳解】解:原式=×=×=,∵x2﹣x﹣2=2,∴x2=x+2,∴==2.19、(1)本班有4名同學(xué)優(yōu)秀;(2)補(bǔ)圖見(jiàn)解析;(3)1500人.【解析】
(1)根據(jù)統(tǒng)計(jì)圖即可得出結(jié)論;(2)先計(jì)算出優(yōu)秀的學(xué)生,再補(bǔ)齊統(tǒng)計(jì)圖即可;(3)根據(jù)圖2的數(shù)值計(jì)算即可得出結(jié)論.【詳解】(1)本班有學(xué)生:20÷50%=40(名),本班優(yōu)秀的學(xué)生有:40﹣40×30%﹣20﹣4=4(名),答:本班有4名同學(xué)優(yōu)秀;(2)成績(jī)一般的學(xué)生有:40×30%=12(名),成績(jī)優(yōu)秀的有4名同學(xué),補(bǔ)全的條形統(tǒng)計(jì)圖,如圖所示;(3)3000×50%=1500(名),答:該校3000人有1500人成績(jī)良好.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖,解題的關(guān)鍵是熟練的掌握條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖的知識(shí)點(diǎn).20、見(jiàn)解析【解析】
依據(jù)條件得出∠C=∠DHG=90°,∠CGE=∠GED,依據(jù)F是AD的中點(diǎn),F(xiàn)G∥AE,即可得到FG是線段ED的垂直平分線,進(jìn)而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD.【詳解】證明:∵AF=FG,∴∠FAG=∠FGA,∵AG平分∠CAB,∴∠CAG=∠FAG,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE,∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∵F是AD的中點(diǎn),F(xiàn)G∥AE,∴H是ED的中點(diǎn)∴FG是線段ED的垂直平分線,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD.(AAS).【點(diǎn)睛】本題考查了全等三角形的判定,線段垂直平分線的判定與性質(zhì),熟練掌握全等三角形的判定定理是解決問(wèn)題的關(guān)鍵.21、(1)參與問(wèn)卷調(diào)查的總?cè)藬?shù)為500人;(2)補(bǔ)全條形統(tǒng)計(jì)圖見(jiàn)解析;(3)這些人中最喜歡微信支付方式的人數(shù)約為2800人.【解析】
(1)根據(jù)喜歡支付寶支付的人數(shù)÷其所占各種支付方式的比例=參與問(wèn)卷調(diào)查的總?cè)藬?shù),即可求出結(jié)論;
(2)根據(jù)喜歡現(xiàn)金支付的人數(shù)(41~60歲)=參與問(wèn)卷調(diào)查的總?cè)藬?shù)×現(xiàn)金支付所占各種支付方式的比例-15,即可求出喜歡現(xiàn)金支付的人數(shù)(41~60歲),再將條形統(tǒng)計(jì)圖補(bǔ)充完整即可得出結(jié)論;
(3)根據(jù)喜歡微信支付方式的人數(shù)=社區(qū)居民人數(shù)×微信支付所占各種支付方式的比例,即可求出結(jié)論.【詳解】(1)(人.答:參與問(wèn)卷調(diào)查的總?cè)藬?shù)為500人.(2)(人.補(bǔ)全條形統(tǒng)計(jì)圖,如圖所示
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024快遞行業(yè)廣告投放合作協(xié)議
- 2024年股權(quán)承接協(xié)議:股權(quán)轉(zhuǎn)讓合同范本
- 鐵路安全知識(shí)培訓(xùn)課件
- 2025年度高端寵物狗品種繁育與買(mǎi)賣(mài)合作協(xié)議3篇
- 反電詐業(yè)務(wù)知識(shí)培訓(xùn)課件
- 英文衛(wèi)浴知識(shí)培訓(xùn)課件
- 《口頭語(yǔ)言的特點(diǎn)》課件
- 2025年度船舶貨物保險(xiǎn)責(zé)任免除與賠償范圍合同3篇
- 鄭州黃河護(hù)理職業(yè)學(xué)院《園林植物病理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江國(guó)際海運(yùn)職業(yè)技術(shù)學(xué)院《媒介倫理與影視法規(guī)》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶市豐都縣2023-2024學(xué)年七年級(jí)上學(xué)期期末數(shù)學(xué)試題
- 四年級(jí)數(shù)學(xué)思維訓(xùn)練題100道
- 《EPDM密封條及技術(shù)》課件
- 私募基金業(yè)務(wù)獎(jiǎng)金激勵(lì)制度
- DB43-T 2897-2023 竹纖維復(fù)合波紋管材技術(shù)規(guī)范
- 人情往來(lái)(禮金)賬目表
- 2023年安全總監(jiān)年終工作總結(jié)
- GB/T 43543-2023漱口水
- 法拍輔助工作管理制度
- 中控室保密與信息安全政策
- 后端開(kāi)發(fā)年終總結(jié)
評(píng)論
0/150
提交評(píng)論