2023屆福建省南平市中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁(yè)
2023屆福建省南平市中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁(yè)
2023屆福建省南平市中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁(yè)
2023屆福建省南平市中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁(yè)
2023屆福建省南平市中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.實(shí)數(shù)a,b在數(shù)軸上對(duì)應(yīng)的點(diǎn)的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)+b<0 B.a(chǎn)>|﹣2| C.b>π D.2.如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°3.計(jì)算﹣的結(jié)果為()A. B. C. D.4.若點(diǎn)A(a,b),B(,c)都在反比例函數(shù)y=的圖象上,且﹣1<c<0,則一次函數(shù)y=(b﹣c)x+ac的大致圖象是()A. B.C. D.5.如圖所示的工件,其俯視圖是()A. B. C. D.6.如圖,將周長(zhǎng)為8的△ABC沿BC方向平移1個(gè)單位長(zhǎng)度得到,則四邊形的周長(zhǎng)為()A.8 B.10 C.12 D.167.下列運(yùn)算結(jié)果是無(wú)理數(shù)的是()A.3× B. C. D.8.從3、1、-2這三個(gè)數(shù)中任取兩個(gè)不同的數(shù)作為P點(diǎn)的坐標(biāo),則P點(diǎn)剛好落在第四象限的概率是()A. B. C. D.9.在六張卡片上分別寫有,π,1.5,5,0,六個(gè)數(shù),從中任意抽取一張,卡片上的數(shù)為無(wú)理數(shù)的概率是()A. B. C. D.10.如圖,在中,邊上的高是()A. B. C. D.11.用6個(gè)相同的小正方體搭成一個(gè)幾何體,若它的俯視圖如圖所示,則它的主視圖不可能是()A. B. C. D.12.如圖,△ABC是⊙O的內(nèi)接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點(diǎn)D,則∠BAD的度數(shù)是()A.45° B.85° C.90° D.95°二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.若分式的值為正,則實(shí)數(shù)的取值范圍是__________________.14.在不透明的口袋中有若干個(gè)完全一樣的紅色小球,現(xiàn)放入10個(gè)僅顏色不同的白色小球,均勻混合后,有放回的隨機(jī)摸取30次,有10次摸到白色小球,據(jù)此估計(jì)該口袋中原有紅色小球個(gè)數(shù)為_____.15.如圖,在等腰△ABC中,AB=AC,BC邊上的高AD=6cm,腰AB上的高CE=8cm,則BC=_____cm16.某航空公司規(guī)定,乘客所攜帶行李的重量x(kg)與運(yùn)費(fèi)y(元)滿足如圖所示的函數(shù)圖象,那么每位乘客最多可免費(fèi)攜帶____kg的行李.17.規(guī)定:,如:,若,則=__.18.在如圖所示的正方形方格紙中,每個(gè)小的四邊形都是相同的正方形,A、B、C、D都是格點(diǎn),AB與CD相交于M,則AM:BM=__.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)(11分)閱讀資料:如圖1,在平面之間坐標(biāo)系xOy中,A,B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B兩點(diǎn)間的距離為AB=.我們知道,圓可以看成到圓心距離等于半徑的點(diǎn)的集合,如圖1,在平面直角坐標(biāo)系xoy中,A(x,y)為圓上任意一點(diǎn),則A到原點(diǎn)的距離的平方為OA1=|x﹣0|1+|y﹣0|1,當(dāng)⊙O的半徑為r時(shí),⊙O的方程可寫為:x1+y1=r1.問題拓展:如果圓心坐標(biāo)為P(a,b),半徑為r,那么⊙P的方程可以寫為.綜合應(yīng)用:如圖3,⊙P與x軸相切于原點(diǎn)O,P點(diǎn)坐標(biāo)為(0,6),A是⊙P上一點(diǎn),連接OA,使tan∠POA=,作PD⊥OA,垂足為D,延長(zhǎng)PD交x軸于點(diǎn)B,連接AB.①證明AB是⊙P的切點(diǎn);②是否存在到四點(diǎn)O,P,A,B距離都相等的點(diǎn)Q?若存在,求Q點(diǎn)坐標(biāo),并寫出以Q為圓心,以O(shè)Q為半徑的⊙O的方程;若不存在,說(shuō)明理由.20.(6分)如圖,拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為M,直線y=m與拋物線交于點(diǎn)A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點(diǎn)之間的部分與線段AB圍成的圖形稱為該拋物線對(duì)應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點(diǎn)M稱為碟頂.(1)由定義知,取AB中點(diǎn)N,連結(jié)MN,MN與AB的關(guān)系是_____.(2)拋物線y=對(duì)應(yīng)的準(zhǔn)蝶形必經(jīng)過(guò)B(m,m),則m=_____,對(duì)應(yīng)的碟寬AB是_____.(3)拋物線y=ax2﹣4a﹣(a>0)對(duì)應(yīng)的碟寬在x軸上,且AB=1.①求拋物線的解析式;②在此拋物線的對(duì)稱軸上是否有這樣的點(diǎn)P(xp,yp),使得∠APB為銳角,若有,請(qǐng)求出yp的取值范圍.若沒有,請(qǐng)說(shuō)明理由.21.(6分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達(dá)式;(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;(3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).22.(8分)“不出城郭而獲山水之怡,身居鬧市而有林泉之致”,合肥市某區(qū)不斷推進(jìn)“園林城市”建設(shè),今春種植了四類花苗,園林部門從種植的這批花苗中隨機(jī)抽取了2000株,將四類花苗的種植株數(shù)繪制成扇形統(tǒng)計(jì)圖,將四類花苗的成活株數(shù)繪制成條形統(tǒng)圖.經(jīng)統(tǒng)計(jì)這批2000株的花苗總成活率為90%,其中玉蘭和月季的成活率較高,根據(jù)圖表中的信息解答下列問題:扇形統(tǒng)計(jì)圖中玉蘭所對(duì)的圓心角為,并補(bǔ)全條形統(tǒng)計(jì)圖;該區(qū)今年共種植月季8000株,成活了約株;園林部門決定明年從這四類花苗中選兩類種植,請(qǐng)用列表法或畫樹狀圖求恰好選到成活率較高的兩類花苗的概率.23.(8分)如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),且與雙曲線的一個(gè)交點(diǎn)為,將直線在軸下方的部分沿軸翻折,得到一個(gè)“”形折線的新函數(shù).若點(diǎn)是線段上一動(dòng)點(diǎn)(不包括端點(diǎn)),過(guò)點(diǎn)作軸的平行線,與新函數(shù)交于另一點(diǎn),與雙曲線交于點(diǎn).(1)若點(diǎn)的橫坐標(biāo)為,求的面積;(用含的式子表示)(2)探索:在點(diǎn)的運(yùn)動(dòng)過(guò)程中,四邊形能否為平行四邊形?若能,求出此時(shí)點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.24.(10分)老師布置了一個(gè)作業(yè),如下:已知:如圖1的對(duì)角線的垂直平分線交于點(diǎn),交于點(diǎn),交于點(diǎn).求證:四邊形是菱形.某同學(xué)寫出了如圖2所示的證明過(guò)程,老師說(shuō)該同學(xué)的作業(yè)是錯(cuò)誤的.請(qǐng)你解答下列問題:能找出該同學(xué)錯(cuò)誤的原因嗎?請(qǐng)你指出來(lái);請(qǐng)你給出本題的正確證明過(guò)程.25.(10分)圖1和圖2中,優(yōu)弧紙片所在⊙O的半徑為2,AB=2,點(diǎn)P為優(yōu)弧上一點(diǎn)(點(diǎn)P不與A,B重合),將圖形沿BP折疊,得到點(diǎn)A的對(duì)稱點(diǎn)A′.發(fā)現(xiàn):(1)點(diǎn)O到弦AB的距離是,當(dāng)BP經(jīng)過(guò)點(diǎn)O時(shí),∠ABA′=;(2)當(dāng)BA′與⊙O相切時(shí),如圖2,求折痕的長(zhǎng).拓展:把上圖中的優(yōu)弧紙片沿直徑MN剪裁,得到半圓形紙片,點(diǎn)P(不與點(diǎn)M,N重合)為半圓上一點(diǎn),將圓形沿NP折疊,分別得到點(diǎn)M,O的對(duì)稱點(diǎn)A′,O′,設(shè)∠MNP=α.(1)當(dāng)α=15°時(shí),過(guò)點(diǎn)A′作A′C∥MN,如圖3,判斷A′C與半圓O的位置關(guān)系,并說(shuō)明理由;(2)如圖4,當(dāng)α=°時(shí),NA′與半圓O相切,當(dāng)α=°時(shí),點(diǎn)O′落在上.(3)當(dāng)線段NO′與半圓O只有一個(gè)公共點(diǎn)N時(shí),直接寫出β的取值范圍.26.(12分)如圖,拋物線(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知B點(diǎn)坐標(biāo)為(4,0).(1)求拋物線的解析式;(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);(3)若點(diǎn)M是線段BC下方的拋物線上一點(diǎn),求△MBC的面積的最大值,并求出此時(shí)M點(diǎn)的坐標(biāo).27.(12分)如圖,以O(shè)為圓心,4為半徑的圓與x軸交于點(diǎn)A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度數(shù);(2)P為x軸正半軸上一點(diǎn),且PA=OA,連接PC,試判斷PC與⊙O的位置關(guān)系,并說(shuō)明理由;(3)有一動(dòng)點(diǎn)M從A點(diǎn)出發(fā),在⊙O上按順時(shí)針方向運(yùn)動(dòng)一周,當(dāng)S△MAO=S△CAO時(shí),求動(dòng)點(diǎn)M所經(jīng)過(guò)的弧長(zhǎng),并寫出此時(shí)M點(diǎn)的坐標(biāo).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】

根據(jù)數(shù)軸上點(diǎn)的位置,可得a,b,根據(jù)有理數(shù)的運(yùn)算,可得答案.【詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸,利用有理數(shù)的運(yùn)算是解題關(guān)鍵.2、C【解析】試題分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點(diǎn):1.面動(dòng)旋轉(zhuǎn)問題;2.平行線的性質(zhì);3.旋轉(zhuǎn)的性質(zhì);4.等腰三角形的性質(zhì).3、A【解析】

根據(jù)分式的運(yùn)算法則即可【詳解】解:原式=,故選A.【點(diǎn)睛】本題主要考查分式的運(yùn)算。4、D【解析】

將,代入,得,,然后分析與的正負(fù),即可得到的大致圖象.【詳解】將,代入,得,,即,.∴.∵,∴,∴.即與異號(hào).∴.又∵,故選D.【點(diǎn)睛】本題考查了反比例函數(shù)圖像上點(diǎn)的坐標(biāo)特征,一次函數(shù)的圖像與性質(zhì),得出與的正負(fù)是解答本題的關(guān)鍵.5、B【解析】試題分析:從上邊看是一個(gè)同心圓,外圓是實(shí)線,內(nèi)圓是虛線,故選B.點(diǎn)睛:本題考查了簡(jiǎn)單組合體的三視圖,從上邊看得到的圖形是俯視圖.看得見部分的輪廓線要畫成實(shí)線,看不見部分的輪廓線要畫成虛線.6、B【解析】根據(jù)平移的基本性質(zhì),得出四邊形ABFD的周長(zhǎng)=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根據(jù)題意,將周長(zhǎng)為8個(gè)單位的△ABC沿邊BC向右平移1個(gè)單位得到△DEF,

∴AD=1,BF=BC+CF=BC+1,DF=AC;

又∵AB+BC+AC=8,

∴四邊形ABFD的周長(zhǎng)=AD+AB+BF+DF=1+AB+BC+1+AC=1.

故選C.“點(diǎn)睛”本題考查平移的基本性質(zhì):①平移不改變圖形的形狀和大??;②經(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等.得到CF=AD,DF=AC是解題的關(guān)鍵.7、B【解析】

根據(jù)二次根式的運(yùn)算法則即可求出答案.【詳解】A選項(xiàng):原式=3×2=6,故A不是無(wú)理數(shù);B選項(xiàng):原式=,故B是無(wú)理數(shù);C選項(xiàng):原式==6,故C不是無(wú)理數(shù);D選項(xiàng):原式==12,故D不是無(wú)理數(shù)故選B.【點(diǎn)睛】考查二次根式的運(yùn)算,解題的關(guān)鍵是熟練運(yùn)用二次根式的運(yùn)算法則,本題屬于基礎(chǔ)題型.8、B【解析】解:畫樹狀圖得:∵共有6種等可能的結(jié)果,其中(1,-2),(3,-2)點(diǎn)落在第四項(xiàng)象限,∴P點(diǎn)剛好落在第四象限的概率==.故選B.點(diǎn)睛:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,熟記各象限內(nèi)點(diǎn)的符號(hào)特點(diǎn)是解題的關(guān)鍵.9、B【解析】

無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù),無(wú)理數(shù)通常有以下三種形式:一是開方開不盡的數(shù),二是圓周率π,三是構(gòu)造的一些不循環(huán)的數(shù),如1.010010001……(兩個(gè)1之間0的個(gè)數(shù)一次多一個(gè)).然后用無(wú)理數(shù)的個(gè)數(shù)除以所有書的個(gè)數(shù),即可求出從中任意抽取一張,卡片上的數(shù)為無(wú)理數(shù)的概率.【詳解】∵這組數(shù)中無(wú)理數(shù)有,共2個(gè),∴卡片上的數(shù)為無(wú)理數(shù)的概率是.故選B.【點(diǎn)睛】本題考查了無(wú)理數(shù)的定義及概率的計(jì)算.10、D【解析】

根據(jù)三角形的高線的定義解答.【詳解】根據(jù)高的定義,AF為△ABC中BC邊上的高.故選D.【點(diǎn)睛】本題考查了三角形的高的定義,熟記概念是解題的關(guān)鍵.11、D【解析】分析:根據(jù)主視圖和俯視圖之間的關(guān)系可以得出答案.詳解:∵主視圖和俯視圖的長(zhǎng)要相等,∴只有D選項(xiàng)中的長(zhǎng)和俯視圖不相等,故選D.點(diǎn)睛:本題主要考查的就是三視圖的畫法,屬于基礎(chǔ)題型.三視圖的畫法為:主視圖和俯視圖的長(zhǎng)要相等;主視圖和左視圖的高要相等;左視圖和俯視圖的寬要相等.12、B【解析】

解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分線BD交⊙O于點(diǎn)D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故選B.【點(diǎn)睛】本題考查圓周角定理;圓心角、弧、弦的關(guān)系.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、x>0【解析】【分析】分式值為正,則分子與分母同號(hào),據(jù)此進(jìn)行討論即可得.【詳解】∵分式的值為正,∴x與x2+2的符號(hào)同號(hào),∵x2+2>0,∴x>0,故答案為x>0.【點(diǎn)睛】本題考查了分式值為正的情況,熟知分式值為正時(shí),分子分母同號(hào)是解題的關(guān)鍵.14、20【解析】

利用頻率估計(jì)概率,設(shè)原來(lái)紅球個(gè)數(shù)為x個(gè),根據(jù)摸取30次,有10次摸到白色小球結(jié)合概率公式可得關(guān)于x的方程,解方程即可得.【詳解】設(shè)原來(lái)紅球個(gè)數(shù)為x個(gè),則有=,解得,x=20,經(jīng)檢驗(yàn)x=20是原方程的根.故答案為20.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率和概率公式的應(yīng)用,熟練掌握概率的求解方法以及分式方程的求解方法是解題的關(guān)鍵.15、【解析】

根據(jù)三角形的面積公式求出=,根據(jù)等腰三角形的性質(zhì)得到BD=DC=BC,根據(jù)勾股定理列式計(jì)算即可.【詳解】∵AD是BC邊上的高,CE是AB邊上的高,∴AB?CE=BC?AD,∵AD=6,CE=8,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,∵AB2?BD2=AD2,∴AB2=BC2+36,即BC2=BC2+36,解得:BC=.故答案為:.【點(diǎn)睛】本題考查的是等腰三角形的性質(zhì)、勾股定理的應(yīng)用和三角形面積公式的應(yīng)用,根據(jù)三角形的面積公式求出腰與底的比是解題的關(guān)16、2【解析】

設(shè)乘客所攜帶行李的重量x(kg)與運(yùn)費(fèi)y(元)之間的函數(shù)關(guān)系式為y=kx+b,由待定系數(shù)法求出其解即可.【詳解】解:設(shè)乘客所攜帶行李的重量x(kg)與運(yùn)費(fèi)y(元)之間的函數(shù)關(guān)系式為y=kx+b,由題意,得,解得,,則y=30x-1.

當(dāng)y=0時(shí),

30x-1=0,

解得:x=2.

故答案為:2.【點(diǎn)睛】本題考查了運(yùn)用待定系數(shù)法求一次函數(shù)的解析式的運(yùn)用,由函數(shù)值求自變量的值的運(yùn)用,解答時(shí)求出函數(shù)的解析式是關(guān)鍵.17、1或-1【解析】

根據(jù)a?b=(a+b)b,列出關(guān)于x的方程(2+x)x=1,解方程即可.【詳解】依題意得:(2+x)x=1,整理,得x2+2x=1,所以(x+1)2=4,所以x+1=±2,所以x=1或x=-1.故答案是:1或-1.【點(diǎn)睛】用配方法解一元二次方程的步驟:①把原方程化為ax2+bx+c=0(a≠0)的形式;②方程兩邊同除以二次項(xiàng)系數(shù),使二次項(xiàng)系數(shù)為1,并把常數(shù)項(xiàng)移到方程右邊;③方程兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方;④把左邊配成一個(gè)完全平方式,右邊化為一個(gè)常數(shù);⑤如果右邊是非負(fù)數(shù),就可以進(jìn)一步通過(guò)直接開平方法來(lái)求出它的解,如果右邊是一個(gè)負(fù)數(shù),則判定此方程無(wú)實(shí)數(shù)解.18、5:1【解析】

根據(jù)題意作出合適的輔助線,然后根據(jù)三角形相似即可解答本題.【詳解】解:作AE∥BC交DC于點(diǎn)E,交DF于點(diǎn)F,設(shè)每個(gè)小正方形的邊長(zhǎng)為a,則△DEF∽△DCN,∴==,∴EF=a,∵AF=2a,∴AE=a,∵△AME∽△BMC,∴===,故答案為:5:1.【點(diǎn)睛】本題考查相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、問題拓展:(x﹣a)1+(y﹣b)1=r1綜合應(yīng)用:①見解析②點(diǎn)Q的坐標(biāo)為(4,3),方程為(x﹣4)1+(y﹣3)1=15.【解析】試題分析:?jiǎn)栴}拓展:設(shè)A(x,y)為⊙P上任意一點(diǎn),則有AP=r,根據(jù)閱讀材料中的兩點(diǎn)之間距離公式即可求出⊙P的方程;綜合應(yīng)用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,從而可證到△POB≌△PAB,則有∠POB=∠PAB.由⊙P與x軸相切于原點(diǎn)O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切線;②當(dāng)點(diǎn)Q在線段BP中點(diǎn)時(shí),根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得QO=QP=BQ=AQ.易證∠OBP=∠POA,則有tan∠OBP==.由P點(diǎn)坐標(biāo)可求出OP、OB.過(guò)點(diǎn)Q作QH⊥OB于H,易證△BHQ∽△BOP,根據(jù)相似三角形的性質(zhì)可求出QH、BH,進(jìn)而求出OH,就可得到點(diǎn)Q的坐標(biāo),然后運(yùn)用問題拓展中的結(jié)論就可解決問題.試題解析:解:?jiǎn)栴}拓展:設(shè)A(x,y)為⊙P上任意一點(diǎn),∵P(a,b),半徑為r,∴AP1=(x﹣a)1+(y﹣b)1=r1.故答案為(x﹣a)1+(y﹣b)1=r1;綜合應(yīng)用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,,∴△POB≌△PAB,∴∠POB=∠PAB.∵⊙P與x軸相切于原點(diǎn)O,∴∠POB=90°,∴∠PAB=90°,∴AB是⊙P的切線;②存在到四點(diǎn)O,P,A,B距離都相等的點(diǎn)Q.當(dāng)點(diǎn)Q在線段BP中點(diǎn)時(shí),∵∠POB=∠PAB=90°,∴QO=QP=BQ=AQ.此時(shí)點(diǎn)Q到四點(diǎn)O,P,A,B距離都相等.∵∠POB=90°,OA⊥PB,∴∠OBP=90°﹣∠DOB=∠POA,∴tan∠OBP==tan∠POA=.∵P點(diǎn)坐標(biāo)為(0,6),∴OP=6,OB=OP=3.過(guò)點(diǎn)Q作QH⊥OB于H,如圖3,則有∠QHB=∠POB=90°,∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=3﹣4=4,∴點(diǎn)Q的坐標(biāo)為(4,3),∴OQ==5,∴以Q為圓心,以O(shè)Q為半徑的⊙O的方程為(x﹣4)1+(y﹣3)1=15.考點(diǎn):圓的綜合題;全等三角形的判定與性質(zhì);等腰三角形的性質(zhì);直角三角形斜邊上的中線;勾股定理;切線的判定與性質(zhì);相似三角形的判定與性質(zhì);銳角三角函數(shù)的定義.20、(1)MN與AB的關(guān)系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此拋物線的對(duì)稱軸上有這樣的點(diǎn)P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【解析】

(1)直接利用等腰直角三角形的性質(zhì)分析得出答案;(2)利用已知點(diǎn)為B(m,m),代入拋物線解析式進(jìn)而得出m的值,即可得出AB的值;(2)①根據(jù)題意得出拋物線必過(guò)(2,0),進(jìn)而代入求出答案;②根據(jù)y=x2﹣2的對(duì)稱軸上P(0,2),P(0,﹣2)時(shí),∠APB為直角,進(jìn)而得出答案.【詳解】(1)MN與AB的關(guān)系是:MN⊥AB,MN=AB,如圖1,∵△AMB是等腰直角三角形,且N為AB的中點(diǎn),∴MN⊥AB,MN=AB,故答案為MN⊥AB,MN=AB;(2)∵拋物線y=對(duì)應(yīng)的準(zhǔn)蝶形必經(jīng)過(guò)B(m,m),∴m=m2,解得:m=2或m=0(不合題意舍去),當(dāng)m=2則,2=x2,解得:x=±2,則AB=2+2=4;故答案為2,4;(2)①由已知,拋物線對(duì)稱軸為:y軸,∵拋物線y=ax2﹣4a﹣(a>0)對(duì)應(yīng)的碟寬在x軸上,且AB=1.∴拋物線必過(guò)(2,0),代入y=ax2﹣4a﹣(a>0),得,9a﹣4a﹣=0,解得:a=,∴拋物線的解析式是:y=x2﹣2;②由①知,如圖2,y=x2﹣2的對(duì)稱軸上P(0,2),P(0,﹣2)時(shí),∠APB為直角,∴在此拋物線的對(duì)稱軸上有這樣的點(diǎn)P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【點(diǎn)睛】此題主要考查了二次函數(shù)綜合以及等腰直角三角形的性質(zhì),正確應(yīng)用等腰直角三角形的性質(zhì)是解題關(guān)鍵.21、(1)拋物線的解析式為:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)當(dāng)點(diǎn)E運(yùn)動(dòng)到(1,1)時(shí),四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.【解析】試題分析:(1)將點(diǎn)A、C的坐標(biāo)分別代入可得二元一次方程組,解方程組即可得出m、n的值;(1)根據(jù)二次函數(shù)的解析式可得對(duì)稱軸方程,由勾股定理求出CD的值,以點(diǎn)C為圓心,CD為半徑作弧交對(duì)稱軸于P1;以點(diǎn)D為圓心CD為半徑作圓交對(duì)稱軸于點(diǎn)P1,P3;作CH垂直于對(duì)稱軸與點(diǎn)H,由等腰三角形的性質(zhì)及勾股定理就可以求出結(jié)論;(3)由二次函數(shù)的解析式可求出B點(diǎn)的坐標(biāo),從而可求出BC的解析式,從而可設(shè)設(shè)E點(diǎn)的坐標(biāo),進(jìn)而可表示出F的坐標(biāo),由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關(guān)系式,由二次函數(shù)的性質(zhì)就可以求出結(jié)論.試題解析:(1)∵拋物線y=﹣x1+mx+n經(jīng)過(guò)A(﹣1,0),C(0,1).解得:,∴拋物線的解析式為:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴拋物線的對(duì)稱軸是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD為腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x軸于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)當(dāng)y=0時(shí),0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).設(shè)直線BC的解析式為y=kx+b,由圖象,得,解得:,∴直線BC的解析式為:y=﹣x+1.如圖1,過(guò)點(diǎn)C作CM⊥EF于M,設(shè)E(a,﹣a+1),F(xiàn)(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四邊形CDBF=S△BCD+S△CEF+S△BEF=BD?OC+EF?CM+EF?BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1時(shí),S四邊形CDBF的面積最大=,∴E(1,1).考點(diǎn):1、勾股定理;1、等腰三角形的性質(zhì);3、四邊形的面積;2、二次函數(shù)的最值22、(1)72°,見解析;(2)7280;(3)16【解析】

(1)根據(jù)題意列式計(jì)算,補(bǔ)全條形統(tǒng)計(jì)圖即可;(2)根據(jù)題意列式計(jì)算即可;(3)畫樹狀圖得出所有等可能的情況數(shù),找出選到成活率較高的兩類樹苗的情況數(shù),即可求出所求的概率.【詳解】(1)扇形統(tǒng)計(jì)圖中玉蘭所對(duì)的圓心角為360°×(1-40%-15%-25%)=72°月季的株數(shù)為2000×90%-380-422-270=728(株),補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:(2)月季的成活率為728所以月季成活株數(shù)為8000×91%=7280(株).故答案為:7280.(3)由題意知,成活率較高的兩類花苗是玉蘭和月季,玉蘭、月季、桂花、臘梅分別用A、B、C、D表示,畫樹狀圖如下:所有等可能的情況有12種,其中恰好選到成活率較高的兩類花苗有2種.∴P(恰好選到成活率較高的兩類花苗)=【點(diǎn)睛】此題主要考查了條形統(tǒng)計(jì)圖以及扇形統(tǒng)計(jì)圖的應(yīng)用,根據(jù)統(tǒng)計(jì)圖得出正確信息是解題關(guān)鍵.23、(1);(2)不能成為平行四邊形,理由見解析【解析】

(1)將點(diǎn)B坐標(biāo)代入一次函數(shù)上可得出點(diǎn)B的坐標(biāo),由點(diǎn)B的坐標(biāo),利用待定系數(shù)法可求出反比例函數(shù)解析式,根據(jù)點(diǎn)的坐標(biāo)為,可以判斷出,再由點(diǎn)P的橫坐標(biāo)可得出點(diǎn)P的坐標(biāo)是,結(jié)合PD∥x軸可得出點(diǎn)D的坐標(biāo),再利用三角形的面積公式即可用含的式子表示出△MPD的面積;

(2)當(dāng)P為BM的中點(diǎn)時(shí),利用中點(diǎn)坐標(biāo)公式可得出點(diǎn)P的坐標(biāo),結(jié)合PD∥x軸可得出點(diǎn)D的坐標(biāo),由折疊的性質(zhì)可得出直線MN的解析式,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)C的坐標(biāo),由點(diǎn)P,C,D的坐標(biāo)可得出PD≠PC,由此即可得出四邊形BDMC不能成為平行四邊形.【詳解】解:(1)∵點(diǎn)在直線上,∴.∵點(diǎn)在的圖像上,∴,∴.設(shè),則.∵∴.記的面積為,∴.(2)當(dāng)點(diǎn)為中點(diǎn)時(shí),其坐標(biāo)為,∴.∵直線在軸下方的部分沿軸翻折得表示的函數(shù)表達(dá)式是:,∴,∴,∴與不能互相平分,∴四邊形不能成為平行四邊形.【點(diǎn)睛】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法求反比例函數(shù)解析式、反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積、折疊的性質(zhì)以及平行四邊形的判定,解題的關(guān)鍵是:(1)利用一次(反比例)函數(shù)圖象上點(diǎn)的坐標(biāo)特征,找出點(diǎn)P,M,D的坐標(biāo);(2)利用平行四邊形的對(duì)角線互相平分,找出四邊形BDMC不能成為平行四邊形.24、(1)能,見解析;(2)見解析.【解析】

(1)直接利用菱形的判定方法分析得出答案;

(2)直接利用全等三角形的判定與性質(zhì)得出EO=FO,進(jìn)而得出答案.【詳解】解:(1)能;該同學(xué)錯(cuò)在AC和EF并不是互相平分的,EF垂直平分AC,但未證明AC垂直平分EF,需要通過(guò)證明得出;(2)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC.∴∠FAC=∠ECA.∵EF是AC的垂直平分線,∴OA=OC.∵在△AOF與△COE中,,∴△AOF≌△COE(ASA).∴EO=FO.∴AC垂直平分EF.∴EF與AC互相垂直平分.∴四邊形AECF是菱形.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),菱形的判定,全等三角形的判定與性質(zhì),正確得出全等三角形是解題關(guān)鍵.25、發(fā)現(xiàn):(1)1,60°;(2)2;拓展:(1)相切,理由詳見解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】

發(fā)現(xiàn):(1)利用垂徑定理和勾股定理即可求出點(diǎn)O到AB的距離;利用銳角三角函數(shù)的定義及軸對(duì)稱性就可求出∠ABA′.(2)根據(jù)切線的性質(zhì)得到∠OBA′=90°,從而得到∠ABA′=120°,就可求出∠ABP,進(jìn)而求出∠OBP=30°.過(guò)點(diǎn)O作OG⊥BP,垂足為G,容易求出OG、BG的長(zhǎng),根據(jù)垂徑定理就可求出折痕的長(zhǎng).拓展:(1)過(guò)A'、O作A'H⊥MN于點(diǎn)H,OD⊥A'C于點(diǎn)D.用含30°角的直角三角形的性質(zhì)可得OD=A'H=A'N=MN=2可判定A′C與半圓相切;(2)當(dāng)NA′與半圓相切時(shí),可知ON⊥A′N,則可知α=45°,當(dāng)O′在時(shí),連接MO′,則可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;(3)根據(jù)點(diǎn)A′的位置不同得到線段NO′與半圓O只有一個(gè)公共點(diǎn)N時(shí)α的取值范圍是0°<α<30°或45°≤α<90°.【詳解】發(fā)現(xiàn):(1)過(guò)點(diǎn)O作OH⊥AB,垂足為H,如圖1所示,∵⊙O的半徑為2,AB=2,∴OH==在△BOH中,OH=1,BO=2∴∠ABO=30°∵圖形沿BP折疊,得到點(diǎn)A的對(duì)稱點(diǎn)A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)過(guò)點(diǎn)O作OG⊥BP,垂足為G,如圖2所示.∵BA′與⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的長(zhǎng)為2拓展:(1)相切.分別過(guò)A'、O作A'H⊥MN于點(diǎn)H,OD⊥A'C于點(diǎn)D.如圖3所示,∵A'C∥MN∴四邊形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=A'N=MN=2∴A'C與半圓(2)當(dāng)NA′與半圓O相切時(shí),則ON⊥NA′,∴∠ONA′=2α=90°,∴α=45當(dāng)O′在上時(shí),連接MO′,則可知NO′=MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案為:45°;30°.(3)∵點(diǎn)P,M不重合,∴α>0,由(2)可知當(dāng)α增大到30°時(shí),點(diǎn)O′在半圓上,∴當(dāng)0°<α<30°時(shí)點(diǎn)O′在半圓內(nèi),線段NO′與半圓只有一個(gè)公共點(diǎn)B;當(dāng)α增大到45°時(shí)NA′與半圓相切,即線段NO′與半圓只有一個(gè)公共點(diǎn)B.當(dāng)α繼續(xù)增大時(shí),點(diǎn)P逐漸靠近點(diǎn)N,但是點(diǎn)P,N不重合,∴α<90°,∴當(dāng)45°≤α<90°線段BO′與半圓只有一個(gè)公共點(diǎn)B.綜上所述0°<α<30°或45°≤α<90°.【點(diǎn)睛】本題考查了切線的性質(zhì)、垂徑定理、勾股定理、三角函數(shù)的定義、30°角所對(duì)的直角邊等于斜邊的一半、翻折問題等知識(shí),正確的作出輔助線是解題的關(guān)鍵.26、(1);(2)(,0);(3)1,M(2,﹣3).【解析】試題分析:方法一:(1)該函數(shù)解析式只有一個(gè)待定系數(shù),只需將B點(diǎn)坐標(biāo)代入解析式中即可.(2)首先根據(jù)拋物線的解析式確定A點(diǎn)坐標(biāo),然后通過(guò)證明△ABC是直角三角形來(lái)推導(dǎo)出直徑AB和圓心的位置,由此確定圓心坐標(biāo).(3)△MBC的面積可由S△MBC=BC×h表示,若要它的面積最大,需要使h取最大值,即點(diǎn)M到直線BC的距離最大,若設(shè)一條平行于BC的直線,那么當(dāng)該直線與拋物線有且只有一個(gè)交點(diǎn)時(shí),該交點(diǎn)就是點(diǎn)M.方法二:(1)該函數(shù)解析式只有一個(gè)待定系數(shù),只需將B點(diǎn)坐標(biāo)代入解析式中即可.(2)通過(guò)求出A,B,C三點(diǎn)坐標(biāo),利用勾股定理或利用斜率垂直公式可求出AC⊥BC,從而求出圓心坐標(biāo).(3)利用三角形面積公式,過(guò)M點(diǎn)作x軸垂線,水平底與鉛垂高乘積的一半,得出△MBC的面積函數(shù),從而求出M點(diǎn).試題解析:解:方法一:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)由(1)的函數(shù)解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=1,即:OC2=OA?OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC為直角三角形,AB為△ABC外接圓的直徑;所以該外

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論