2022-2023學(xué)年山西省陽(yáng)泉市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁(yè)
2022-2023學(xué)年山西省陽(yáng)泉市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁(yè)
2022-2023學(xué)年山西省陽(yáng)泉市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁(yè)
2022-2023學(xué)年山西省陽(yáng)泉市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁(yè)
2022-2023學(xué)年山西省陽(yáng)泉市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年山西省陽(yáng)泉市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.()。A.0

B.1

C.2

D.+∞

2.

A.0

B.

C.1

D.

3.

4.直線l與x軸平行,且與曲線y=x-ex相切,則切點(diǎn)的坐標(biāo)是()A.A.(1,1)

B.(-1,1)

C.(0,-l)

D.(0,1)

5.

6.構(gòu)件承載能力不包括()。

A.強(qiáng)度B.剛度C.穩(wěn)定性D.平衡性

7.

8.

9.

10.

等于()A.A.

B.

C.

D.0

11.

12.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

13.

14.

15.設(shè)f(x)在點(diǎn)x0處取得極值,則()

A.f"(x0)不存在或f"(x0)=0

B.f"(x0)必定不存在

C.f"(x0)必定存在且f"(x0)=0

D.f"(x0)必定存在,不一定為零

16.

17.A.2x

B.3+2x

C.3

D.x2

18.

19.f(x)在x=0的某鄰域內(nèi)一階導(dǎo)數(shù)連續(xù)且則()。A.x=0不是f(x)的極值點(diǎn)B.x=0是f(x)的極大值點(diǎn)C.x=0是f(x)的極小值點(diǎn)D.x=0是f(x)的拐點(diǎn)20.當(dāng)α<x<b時(shí),f'(x)<0,f'(x)>0。則在區(qū)間(α,b)內(nèi)曲線段y=f(x)的圖形A.A.沿x軸正向下降且為凹B.沿x軸正向下降且為凸C.沿x軸正向上升且為凹D.沿x軸正向上升且為凸二、填空題(20題)21.

22.

23.設(shè)f(x)=e5x,則f(x)的n階導(dǎo)數(shù)f(n)(x)=__________.

24.

25.

26.

27.

28.方程cosxsinydx+sinxcosydy=0的通解為___________.

29.

30.

31.

32.33.方程y'-ex-y=0的通解為_____.

34.

35.36.37.

38.

39.

40.過點(diǎn)M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為_________.

三、計(jì)算題(20題)41.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).42.

43.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

44.

45.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.46.47.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.48.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.49.證明:50.

51.

52.求微分方程y"-4y'+4y=e-2x的通解.

53.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.54.求微分方程的通解.55.將f(x)=e-2X展開為x的冪級(jí)數(shù).56.57.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則58.

59.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

60.求曲線在點(diǎn)(1,3)處的切線方程.四、解答題(10題)61.求方程y''2y'+5y=ex的通解.

62.

63.

64.設(shè)z=z(x,y)由方程e2-xy+y+z=0確定,求dz.

65.

66.67.

68.確定函數(shù)f(x,y)=3axy-x3-y3(a>0)的極值點(diǎn).

69.

70.求微分方程y"+4y=e2x的通解。

五、高等數(shù)學(xué)(0題)71.求方程y一3y+2y=0的通解。

六、解答題(0題)72.計(jì)算∫tanxdx。

參考答案

1.B

2.A

3.D

4.C

5.B

6.D

7.B

8.B

9.D

10.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

由于當(dāng)f(x)可積時(shí),定積分的值為一個(gè)確定常數(shù),因此總有

故應(yīng)選D.

11.A

12.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

13.D

14.D

15.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。

16.C

17.A由導(dǎo)數(shù)的基本公式及四則運(yùn)算法則,有故選A.

18.A解析:

19.A∵分母極限為0,分子極限也為0;(否則極限不存在)用羅必達(dá)法則同理即f"(0)一1≠0;x=0不是駐點(diǎn)∵可導(dǎo)函數(shù)的極值點(diǎn)必是駐點(diǎn)∴選A。

20.A由于在(α,b)內(nèi)f'(x)<0,可知f(x)單調(diào)減少。由于f"(x)>0,

可知曲線y=f'(x)在(α,b)內(nèi)為凹,因此選A。21.F(sinx)+C

22.0

23.24.x-arctanx+C;本題考查的知識(shí)點(diǎn)為不定積分的運(yùn)算.

25.y=0

26.1/2

27.

28.sinx·siny=Csinx·siny=C本題考查了可分離變量微分方程的通解的知識(shí)點(diǎn).

由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=-0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.

29.

解析:

30.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。

31.1/232.k=1/233.ey=ex+Cy'-ex-y=0,可改寫為eydy=exdx,兩邊積分得ey=ex+C.

34.2

35.36.0.

本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

所給冪級(jí)數(shù)為不缺項(xiàng)情形

因此收斂半徑為0.37.1.

本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.

38.

39.3x2siny

40.

41.

列表:

說(shuō)明

42.由一階線性微分方程通解公式有

43.

44.

45.

46.

47.

48.函數(shù)的定義域?yàn)?/p>

注意

49.

50.

51.

52.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

53.由二重積分物理意義知

54.

55.

56.57.由等價(jià)無(wú)窮小量的定義可知

58.

59.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%60.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

61.

62.

63.

64.

;本題考查的知識(shí)點(diǎn)為求二元隱函數(shù)的偏導(dǎo)數(shù)與全微分.

求二元隱函數(shù)的偏導(dǎo)數(shù)有兩種方法:

(1)利用隱函數(shù)偏導(dǎo)數(shù)公式:若F(x,y,z)=0確定z=z(x,y),F(xiàn)'z≠0,則

65.66.本題考查的知識(shí)點(diǎn)為求隱函數(shù)的微分.

解法1將方程兩端關(guān)于x求導(dǎo),可得

解法2將方程兩端求微分

【解題指導(dǎo)】

若y=y(tǒng)(x)由方程F(x,y)=0確定,求d

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論