衛(wèi)生統(tǒng)計學(xué)重點筆記_第1頁
衛(wèi)生統(tǒng)計學(xué)重點筆記_第2頁
衛(wèi)生統(tǒng)計學(xué)重點筆記_第3頁
衛(wèi)生統(tǒng)計學(xué)重點筆記_第4頁
衛(wèi)生統(tǒng)計學(xué)重點筆記_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

創(chuàng)作時間:二零二一年六月三十天醫(yī)師資格考試藍寶書-預(yù)防醫(yī)學(xué)之答祿夫天創(chuàng)作創(chuàng)作時間:二零二一年六月三十天醫(yī)學(xué)統(tǒng)計學(xué)方法第一節(jié)基本觀點和基本步伐(特別重要)一、統(tǒng)計工作的基本步伐設(shè)計(最要點、決定成敗)、收集資料、整理資料、剖析資料.整體:依據(jù)研究目的決定的同質(zhì)研究對象的全體,切實地說,是性質(zhì)同樣的所有察看單元某一變量值的會合.整體的指標為參數(shù).實質(zhì)工作中,常常是從整體中隨機抽取必定數(shù)量的個體,作為樣本,用樣本信息來推測整體特色.樣本的指標為統(tǒng)計量.因為整體中存在個體變異,抽樣研究中所抽取的樣本,只包括整體中一部份個體,這類由抽樣惹起的不一樣稱為抽樣偏差.抽樣偏差愈小,用樣本推測整體的精準度愈高;反之,其精準度愈低.小概率事件.二、變量的分類變量:察看單元的特色,分數(shù)值變量和分類變量.第二節(jié)數(shù)值變量數(shù)據(jù)的統(tǒng)計描述(重要考點)一、描述計量資料的集中趨向的指標有1.均數(shù)均數(shù)是算術(shù)均數(shù)的簡稱,合用于正態(tài)或近似正態(tài)分創(chuàng)作時間:二零二一年六月三十天創(chuàng)作時間:二零二一年六月三十天布.2.幾何均數(shù)合用于等比資料,特別是對數(shù)正態(tài)散布的計量資料.對數(shù)正態(tài)散布即原始數(shù)據(jù)呈偏態(tài)散布始數(shù)據(jù)的對數(shù)值lgX代替X)聽從正態(tài)散布時有正和負.

經(jīng)對數(shù)變換后(用原察看值不可以為0,同3.中位數(shù)一組按大年夜小次序擺列的察看值中位次居中的數(shù)值.可用于描述任何散布,特別是偏態(tài)散布資料的集中地點,以及散布不明或散布尾端無確立數(shù)據(jù)資料的中心地點.不可以求均數(shù)和幾何均數(shù),但可求中位數(shù).百分位數(shù)是個界值,將所有察看值分為兩部份,有X%比小,剩下的比大年夜,可用于計算正常值范圍.二、描述計量資料的失散趨向的指標全距和四分位數(shù)間距.方差和標準差最為常常使用,適于正態(tài)散布,既考慮了離均差(察看值和整體均數(shù)之差),又考慮了察看值個數(shù),方差使本來的單元釀成了平方,所以開方為標準差.均為數(shù)值越小,觀察值的變異度越小.變異系數(shù)多組間單元分歧或均數(shù)相差較大年夜的狀況.變異系數(shù)計算公式為:CV=s/X×100%,公式中s為樣本標準差,X為樣本均數(shù).三、標準差的應(yīng)用示意察看值的變異水平(或失散水平).在兩組(或幾組)資料均數(shù)鄰近、懷抱單元同樣的條件下,標準差大年夜,示意察看值的變異度大年夜,即各察看值離均數(shù)較遠,均數(shù)的代表性較差;反之,示意各察看值多集中在均數(shù)四周,均創(chuàng)作時間:二零二一年六月三十天創(chuàng)作時間:二零二一年六月三十天數(shù)的代表性較好.(??迹。┧摹⑨t(yī)學(xué)參照值的計算方法,單雙側(cè)問題,醫(yī)學(xué)為95%醫(yī)學(xué)參照值是指正凡人體或植物體的各樣生理常數(shù),因為存在變異,各樣數(shù)據(jù)不但因人而異,并且同一個人還會隨機體內(nèi)外環(huán)境的改變而改變,因此需要確立其揮動的范圍,即正常值范圍.醫(yī)學(xué)參照值的計算公式:①正態(tài)散布資料95%醫(yī)學(xué)參照值:±1.96s(雙側(cè));XX-1.645s(單側(cè)),s為標準差.②百分位數(shù)法P和P(雙側(cè));P5或P95(單側(cè)).第三節(jié)數(shù)值變量數(shù)據(jù)的統(tǒng)計推測(重要考點)一、標準誤,標準誤與標準差和樣本含量的關(guān)系標準差和標準誤的差別.樣本標準誤即是樣本標準差除以根號下樣本含量.標準誤與標準差成正比;與樣本含量的平方根成反比.所以.為減少抽樣偏差,應(yīng)盡可能保證足夠大年夜的樣本含量.樣本標準差與樣本標準誤是既有聯(lián)系又有區(qū)此外兩個統(tǒng)計量,二者的聯(lián)系是公式:二者的差別在于:樣本標準差是反應(yīng)樣本中各觀察值X1,X2,,Xn變異水平大年夜小的一個指標,它的大年夜小說了然對該樣本代表性的強弱.樣本標準誤是樣本均勻數(shù)1,2,的標準差,它是抽樣偏差的預(yù)計值,其大年夜小說了然樣本間變異水平的大年夜小及精準性的高低.(掌握?。┒?、t散布和標準正態(tài)u散布關(guān)系均以0為中心左右雙側(cè)完整對稱的散布,不過t散布曲線頂端較u散布低,兩頭翹.(v漸漸增大年夜,t散布漸漸逼近u散布).創(chuàng)作時間:二零二一年六月三十天創(chuàng)作時間:二零二一年六月三十天正態(tài)散布的特色:①以均數(shù)為中心左右雙側(cè)完整對稱散布;②兩個參數(shù),均數(shù)u(地點參數(shù))和s(變異參數(shù));③對稱均數(shù)的兩正面積相等.三、整體均數(shù)的預(yù)計樣本統(tǒng)計量計算整體均數(shù)有兩個重要方面:區(qū)間預(yù)計和假定查驗.樣本均數(shù)預(yù)計整體均數(shù)稱點預(yù)計.整體均數(shù)區(qū)間預(yù)計(可信區(qū)間)的觀點:按必定的可信度估計未知整體均數(shù)所在范圍.其統(tǒng)計上習(xí)習(xí)用95%(或99%)可信區(qū)間示意整體均數(shù)μ有95%(或99%)的可能在某一范圍.可信區(qū)間的兩個因素,一為正確度,反應(yīng)在可信度1-α的大年夜小,即區(qū)間包含整體均數(shù)的概率大年夜小,誠然愈靠近1愈好;二是精度,反應(yīng)在區(qū)間的長度,誠然長度愈小愈好.在樣本例數(shù)確立的狀況下,二者是矛盾的,需要兼?zhèn)?整體均數(shù)可信區(qū)間的計算方法:1.當(dāng)n小按t散布的原理用式計算可信區(qū)間為:X±tα/2,vSX2.當(dāng)n足夠大年夜因n足夠大年夜時,t散布逼近μ散布,按正態(tài)散布原理.用式預(yù)計可信區(qū)間為:X±μα/2SX可信區(qū)間與醫(yī)學(xué)參照值范圍的差別:二者的意義和算法分歧.四、假定查驗的步伐1.成立假定:H0(無效,兩樣本代表的整體均數(shù)同樣),H1(備擇,兩樣本來自分歧整體),當(dāng)拒絕H0就接受H1,不拒絕就創(chuàng)作時間:二零二一年六月三十天創(chuàng)作時間:二零二一年六月三十天不接受H1.2.確立明顯性水平:劃分大年夜概率和小概率事件的標準,通常取α=0.05.計算統(tǒng)計量:依據(jù)資料種類和剖析目的選擇適合的公式計算.4.確立概率P值:將計算獲取的t值或u值查界值表獲取P值和α值比力.做出推測結(jié)論.|t|值、P值與統(tǒng)計結(jié)論α|t|值P值統(tǒng)計結(jié)論<t0.05(v)不拒絕H0,分歧無統(tǒng)計學(xué)意義≥t0.05(v)≤拒絕H0,接受H1,分歧有統(tǒng)計學(xué)意義≥t0.01(v)≤拒絕H0,接受H1,分歧有高度統(tǒng)計學(xué)意義五、兩均數(shù)的假定查驗(??迹。颖揪鶖?shù)與整體均數(shù)比力u查驗和t查驗用于樣本均數(shù)與整體均數(shù)的比力.理論上要求樣本來自正態(tài)散布整體實質(zhì)中,只要樣本例數(shù)n較大年夜,或n小但整體標準差σ已知,就采用u檢驗.n較小且σ未知時,用于t查驗.兩樣本均數(shù)比力時還要求兩整體方差等.以算得的統(tǒng)計量t,按表所示關(guān)系作判斷.配對資料的比力在醫(yī)學(xué)研究中,常常使用配對設(shè)計.配對設(shè)計主要有四種狀況:①同一受試對象處理前后的數(shù)據(jù);②同一受試對象兩個部位的數(shù)據(jù);③同同樣品用兩種方法(儀器等)檢驗的結(jié)果;④配對的兩個受試對象分別接受兩種處理后的數(shù)據(jù).情創(chuàng)作時間:二零二一年六月三十天創(chuàng)作時間:二零二一年六月三十天況①的目的是推測其處理有無作用;狀況②、③、④的目的是推斷兩種處理(方法等)的結(jié)果有無分歧.v=對子數(shù)-1;如處理前后或兩法無分歧,則其差數(shù)d的整體均數(shù)應(yīng)為0,可看作樣本均數(shù)d和整體均數(shù)0的比力.d為差數(shù)的均數(shù);Sd為差數(shù)均數(shù)的標準誤,Sd為差數(shù)的標準差;n為對子數(shù).因計算的統(tǒng)計量是t,按表所示關(guān)系作判斷.完整隨機設(shè)計的兩樣本均數(shù)的比力亦稱成組比力.目的是推測兩樣本各自代表的整體均數(shù)μ1與μ2能否相等.依據(jù)樣本含量n的大年夜小,分u查驗與t查驗.查驗用于兩樣本含量n1、n2較小時,且要求兩整體方差相等,即方差齊.若被查驗的兩樣本方差相差明顯則需用t′查驗.u查驗:兩樣本量足夠大年夜,n>50.S=SC2(n1n2)X1X2n1n2v=(n1-1)+(n2-1)=n1+n2-2式中SXX,為兩樣本均數(shù)之差的標準誤,Sc2為歸并預(yù)計方差12(combinedestimatevariance).算得的統(tǒng)計量為t,按表所示關(guān)系做出判斷.4.Ⅰ型缺點和Ⅱ型缺點棄真,拒絕正確的H0為Ⅰ型缺點α示意,若明顯性水平α定為0.05,則犯Ⅰ型缺點的概率0.05;接受缺點的H為Ⅱ型缺點,概率用β示意,β值的大年夜小很難切實0預(yù)計.當(dāng)樣本含量一準時,二者反比,增大年夜n,當(dāng)α一準時,可減少β.1-β稱為查驗效能或掌控度,其統(tǒng)計意義是若兩整體確有創(chuàng)作時間:二零二一年六月三十天創(chuàng)作時間:二零二一年六月三十天分歧,按α水平能檢出其差此外能力.客觀實質(zhì)拒絕H不0拒絕H00成立Ⅰ型缺點(α)推測正H確1-αH0不可立推測正確(1-β)Ⅱ型缺點(β)5.假定查驗注意事項保證組間可比性;依據(jù)研究目的、資料種類和設(shè)計種類采用適合的查驗方法,熟習(xí)各樣查驗方法的應(yīng)用條件;“明顯與否”是統(tǒng)計學(xué)術(shù)語,為“有無統(tǒng)計學(xué)意義”,不可以理解為“分歧能否是大年夜”;結(jié)論不可以絕對化.第四節(jié)分類變量資料的統(tǒng)計描述(一般考點)相對數(shù)是兩個有關(guān)系事物數(shù)據(jù)之比.常常使用的相對數(shù)指標有構(gòu)成比、率、對比較等.一、構(gòu)成比示意事物內(nèi)部各個構(gòu)成部份所占的比重,往常以100為例基數(shù),故又稱為百分比.其公式以下:構(gòu)成比=事物內(nèi)部某一構(gòu)成部分的個體數(shù)×100%事物內(nèi)部各構(gòu)成部分的個體數(shù)總和該式可用符號表達以下:構(gòu)成比=構(gòu)成比有兩個特色:

×100%ABC(1)各構(gòu)成部份的相對數(shù)之和為100%.創(chuàng)作時間:二零二一年六月三十天創(chuàng)作時間:二零二一年六月三十天(2)某一部份所占比重增大年夜,其余部份會相應(yīng)地減少.二、率用以說明某種現(xiàn)象發(fā)生的頻次或強度,故又稱頻次指標,以100,1000,10000或100000為比率基數(shù)(K)均可,原則上以結(jié)果起碼保存一位整數(shù)為宜,其計算公式為:率和構(gòu)成比分歧之處:率的大年夜小僅取決于某種現(xiàn)象的發(fā)生數(shù)和可能發(fā)生該現(xiàn)象的總數(shù),不受其余指標的影響,并且各率之和一般不為1.率=該式亦可用符號表達以下

某現(xiàn)象實質(zhì)發(fā)生例數(shù)×K可能發(fā)生某現(xiàn)象的總數(shù)陽性率=A()×K(若算陰性率則分子為A(-))A()A()式中A(+)為陽性人數(shù),A(-)為陰性人數(shù).三、對比較示意有關(guān)事物指標之比較,常以百分數(shù)和倍數(shù)示意,其公式為:對比較:甲指標/乙指標(或×100%)或用符號示意為:A/B×K四、注意事項①構(gòu)成比和率的分歧,不可以以比代率;②計算相對數(shù)時,觀察例數(shù)不宜過??;③率的比力注意可比性,特別是混淆因素的問題,有的話,可用標準化法和分層剖析除去;④察看單元分歧的幾個率的均勻率不即是幾個率的算術(shù)均數(shù);⑤樣本率或構(gòu)成比的創(chuàng)作時間:二零二一年六月三十天創(chuàng)作時間:二零二一年六月三十天比力應(yīng)做假定查驗.第五節(jié)分類變量資料的統(tǒng)計推測(特別重要)一、率的抽樣偏差用抽樣方法進行研究時,必定存在抽樣偏差.率的抽樣偏差大年夜小可用率的標準誤來示意,計算公式以下:σπ(1π)p=n式中:σp為率的標準誤,π為整體陽性率,n為樣本含量.因為實質(zhì)工作中很難知道整體陽性率π,故一般采用樣本率P來取代,而上式就釀成Sp=P(1P)n二、整體率的可信區(qū)間因為樣本率與整體率之間存在著抽樣偏差,所以也需依據(jù)樣本率來計算整體率所在的范圍,依據(jù)樣本含量n和樣本率P的年夜小分歧,分別采用以下兩種方法:(一)正態(tài)近似法(??迹。┊?dāng)樣本含量n足夠大年夜,且樣本率P和(1-P)均不太小,如nP或n(1-P)均≥5時,樣本率的散布近似正態(tài)散布.則整體率的可信區(qū)間可由以下公式預(yù)計:整體率(π)的95%可信區(qū)間:p±p整體率(π)的99%可信區(qū)間:p±p(二)查表法當(dāng)樣本含量n較小,如n≤50,特別是P接創(chuàng)作時間:二零二一年六月三十天創(chuàng)作時間:二零二一年六月三十天近0或1時,則按二項散布原理確立整體率的可信區(qū)間,其計算較繁,讀者可依據(jù)樣本含量n和陽性數(shù)x參照專用統(tǒng)計學(xué)介紹的二項散布中95%可信限表.三、u查驗(特別重要?。┊?dāng)樣本含量n足夠大年夜,且樣本率P和(1-P)均不太小,如nP或n(1-P)均≥5時,樣本率的散布近似正態(tài)散布.樣本率和整體率之間、兩個樣本率之間差此外判斷可用u查驗.1.樣本率和整體率的比力公式u=|P-π|/σP=|P-π|π(1π)/n;兩樣本率比力公式u=|P1-P2|/Sp1-P2=|P1-P2|/pc(1pc)(1/n11/n2)也可用χ2查驗,二者相等.四、χ2查驗(特別重要?。┛捎糜趦蓚€及兩個以上率或構(gòu)成比的比力;兩分類變量有關(guān)關(guān)系剖析.其數(shù)據(jù)構(gòu)成,必定是互相對峙的兩組數(shù)據(jù),四格表資料自由度v永久=1.四格表χ2查驗各樣公式合用條件,n>40且每個格子T>5,可用基本公式或?qū)S霉?不用校訂.基本公式:χ2=∑(A-T)2/T專用公式:χ2=∑(ad-bc)2n/(a+b)(c+d)(a+c)b+d)只需有一個格子T在1~5之間,需校訂.校訂公式:創(chuàng)作時間:二零二一年六月三十天創(chuàng)作時間:二零二一年六月三十天基本公式:χ2=∑(|A-T|-0.5)2/T專用公式:χ2=∑(|ad-bc|-n/2)2n/(a+b)(c+d)a+c)(b+d)n<40或T<1,用切實概率法.五、行×列表χ2查驗當(dāng)行數(shù)或列數(shù)超越2時,稱為行×列表.行×列表χ2查驗是對多個樣本率(或構(gòu)成比)的查驗.合用條件:一般以為行×列表中不宜有1/5以上格子的理論數(shù)小于5,或有小于1的理論數(shù).1.當(dāng)理論數(shù)太小可采用以下方法處理①增添樣本含量以增大年夜理論數(shù);②刪去上述理論數(shù)太小的行和列;③將太小理論數(shù)所在組與性質(zhì)鄰近的組歸并,使從頭計算的理論數(shù)增大年夜.因為后兩法可能會損失期息,傷害樣本的隨機性,分歧的歸并方式有可能影響推測結(jié)論,故不宜作老例方法.此外,不可以把分歧性質(zhì)的實質(zhì)數(shù)歸并,如研究血型時,不可以把分歧的血型資料歸并.如查驗結(jié)果拒絕查驗假定,只好以為各整體率或整體構(gòu)成比之間總的來說有分歧,但不可以說明它們相互之間都有分歧,或某二者間有分歧.3.對于單向有序隊列表的統(tǒng)計處理在比力各處理組的效應(yīng)有無分歧時,宜用秩和查驗法,如作χ2查驗只說明各處理組的效應(yīng)在構(gòu)成比上有無不一樣.六、配對計數(shù)資料的χ2查驗創(chuàng)作時間:二零二一年六月三十天創(chuàng)作時間:二零二一年六月三十天同同樣品用兩種方法處理,察看陽性和陰性個數(shù).判斷兩種處置方法能否同樣.當(dāng)b+c>40時,χ2=(b-c)2/b+c;b+c<40時,校訂公式:χ2=(|b-c|-1)2/b+c第六節(jié)直線有關(guān)和回歸(一般考點)一、直線有關(guān)剖析的用途、有關(guān)系數(shù)及其意義有關(guān)剖析是研究事物或現(xiàn)象之間有沒關(guān)系、關(guān)系的方向和密切水平.有關(guān)系數(shù):是定量示意兩個變量(X,Y)之間線性關(guān)系的方向和親密水平的指標,用r示意,r=lxy/lxxlxy,其值在-1至+1間,r沒有單元.r呈正當(dāng),兩變量間呈正有關(guān),即二者的改動趨向是同向的,r=1時為完整正有關(guān);如r呈負值,兩變量呈負有關(guān),即二者的改動趨向是反向的,r=-1時為完整負有關(guān).r的絕對值越靠近1,兩變量間線性有關(guān)越親密;越靠近于0,有關(guān)越不密切.當(dāng)r=0時,說明X和Y兩個變量之間無直線關(guān)系.二、直線回歸剖析的作用、回歸系數(shù)及其意義直線回歸剖析的任務(wù)在于找出兩個變量有依存關(guān)系的直線方程,以確立一條最靠近于各實測點的直線,使各實測點與該線的縱向距離的平方和為最小.這個方程稱為直線回歸方程,據(jù)此方程描述的直線就是回歸直線.直線同歸方程式的一般表達式Y(jié)=a+bX式中a為回歸直線在Y軸上的截距,即a>0示意直線與Y軸創(chuàng)作時間:二零二一年六月三十天創(chuàng)作時間:二零二一年六月三十天的交點在原點上方,<0在原點下方,a=0過原點.b為樣本回歸系數(shù),即回歸直線的斜率,示意當(dāng)X改動一個單元時,Y均勻改動b個單元.b>0:示意Y隨X增大年夜而增大年夜b<0:示意Y隨X增大年夜而減少b=0:示意Y不隨X改動而改動第七節(jié)統(tǒng)計表和統(tǒng)計圖(重要考點)一、統(tǒng)計表原則:構(gòu)造簡單、頭頭是道、內(nèi)容安插合理、要點突出、數(shù)據(jù)正確.題目精練表達表的中心內(nèi)容,地點在表的上方.標目有橫標和縱標目,橫標目往常位于表內(nèi)左邊;縱標目

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論