數(shù)學(xué)分析簡(jiǎn)明教程答案12函數(shù)項(xiàng)級(jí)數(shù)_第1頁
數(shù)學(xué)分析簡(jiǎn)明教程答案12函數(shù)項(xiàng)級(jí)數(shù)_第2頁
數(shù)學(xué)分析簡(jiǎn)明教程答案12函數(shù)項(xiàng)級(jí)數(shù)_第3頁
數(shù)學(xué)分析簡(jiǎn)明教程答案12函數(shù)項(xiàng)級(jí)數(shù)_第4頁
數(shù)學(xué)分析簡(jiǎn)明教程答案12函數(shù)項(xiàng)級(jí)數(shù)_第5頁
已閱讀5頁,還剩55頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第十二章數(shù)項(xiàng)級(jí)12.1f

(x)

x2nx

,x(,)fn(x)sinnⅰ)x(l,l) ⅱ)x(,)fn(x)1nx,x(0,1)f

(x) ,1ⅰ)x[a,) a0,ⅱ)x(0,)n2xfn(x)1n3x3?。﹛[a,) a0,ⅱ)x(0,)fn(x)xn1fn(x)1xn

x[0,1]?。﹛[0,b] b0,ⅱ)x[0,1],ⅲ)x[a,) a0fn(x)xnx2n,x[0,1]nf(x)xnxn1,x[0,1]n (10)fn(x)nlnn,x(0,1)f

(x)1ln1enx,x(,)nfn(x)e(xn)2?。﹛[l,l],ⅱ)x(,.解(1)x0

limfn

x2

xf(x)2fn(x)f(x)

x21n

1n1 n2

x2

x n n1N11nNxf(xf(x)

(x)

x2n

xf(x)xx(2)x(,),limfn(x)lim 0f(x) ⅰ)0xxnf(x)f(x) lxxn ln

,故Nl1,當(dāng)nN時(shí),有f(x)f(x) ,因此

(x)sinn在(llf(x)0 ⅱ)02

0,N,nN11,xn

212fn(xn)f(xn)sinx

1

02fn(x)sinn在()f(x)0(3)x(0,1)fn(x)1

11

f(x)(n)0 0NnN1Nxn nf(x)f(x)

nxn1111

1

1 fn(x)

1

在(01)不一致收斂到fx

x(0,),f(x) 0 1

f(x)(n)ⅰ)0

fn(x)f(x) 1 1 1 1

N11nN1

fn(xf(x),對(duì)x[afn(x)1nx在[aa0)f(x)0 ⅱ)0

20,N,nN1N,xn

nfn(xn)f(xn1

1

10121nfn(x1nx在(0f(x)0x

2 nx(0,),fn(x)1n3 n

1

0f(x)(n)3 ⅰ)0

n2x fn(x)f(x)

3n 1 1

N11nN

fn(x)f

,對(duì)x[an2xfn(x)1n31

在[aa0f(x)01ⅱ)0 0NnN1Nxn f(x)f(x)

nn n

0n2x 1n3 即fn(x)1n3 在(0,)不一致收斂于f(x)0 (6)fn(x)xn11n

x

f(x)(n,x[0,1]0

xx fn(x)f

1n

1n N21nN

fn(xf(x)x[01fn(xxn1在[01f(x)xix0,b,b iix iiixa,,afn(x)

0,0x1 1,x1

f(x)(n)1?。?

fn(x)f

1xnxb,x[0,b](b1)取N[logb]1,則當(dāng)n 時(shí),有fn(x)f(x)對(duì)x[0,b](b1)一fn(x)1xn在[0bb1f(x)0ⅱ)03

0,N,nN1N,xn1n11

f(x)f(x) 1 1 2fn(x)1

0,0x1 在[01f(x , ⅲ)0

1fn(x)f1

1 1xn

1,x[a,](a1)Nloga1,則當(dāng)nN

fn(xf(x)

(x) 在1 在[aa1f(x0n1

(x)lim(xnx2n)0

f(x),x[0,1]10 0NnN1Nxn2[01] f(x)f(x)

1121 121fn(xxnx2n在[01]f(x0n

(x)lim(xnxn1)0

f(x),x[0,1]fn(x)f

xnxn1g(x),由g(x)xn1nn1xg(x0xnn

,且0x n

g(x0,當(dāng)n

x1g(x0在x 達(dá)到[0,1]上的最大值,于是x[0,1],n n n n g(x) 1 n1 n n n n 0N11nN

fn(x)f(x)

對(duì)[0

nf(x)xnxn1在[01]f(x)0n (10)x(0,1),fn(x)nlnn0f(x)(n)00x1時(shí),由于limxlnx0,故00xn xnxxn

,故取N11,則當(dāng)nN時(shí),有0x ,從而,1

x01f(x)xlnx在(01)f(x)0 x0f

(x)1ln1enx0(n)n1x0fn(0)nln20n1當(dāng)x0時(shí),由于x1lnenx 1enx1lnenxenx1ln2x, nln2xx(nfn(xx(nf(x)1ln1enx在(,的極限函數(shù)fx0x0 x,x0,由于f(xf(x)1ln21,取N11,則當(dāng)nN fn(xf(x)xf

(x)1ln1enx在(,nf(x顯然limn

(x)lim

0f(x)ⅰ)0x[ll

fn(x)f

e(xn)2nl后,由于exn)2exl)2nl時(shí),有f(xf(x)e(xl)2nlnn f(x)f(x) l,取N lnl1,則當(dāng)nn

fn(x)f(x)

x[l

f(x)f(x)(xn) [l,nf(x)0ⅱ)

10N2

nN1N

)f

)11 nf(x)e(xn)2在(,f(x)0nfn(xn1,2在[ab上有界,并且fn(x)在[abfn(x在[a,b上一致證 由于fn(x)(n1,2,)在[a,b]上有界,故nN,Mn0,使x[abfn(x)Mnfn(x在[abf(x10NnN時(shí),有fn(xf(x)1,顯然fN1xf(x)1 f(x)fN1(x)1MN1fn(x)f(x)1MN12nNMmaxM1M2,MN,MN120,則xabn,fn(x)Mfn(x在[abf(x定義于(a,bfn(x)

(n1,2,)fn(x在(abf(x證明由于nf(x1nf(x)nf(xf(x)1f(x)nf(x)

f 因此limf(x)

f(xxab0,由于1

(xf(x)0nn n1N11,nN

fn(x)f(x)nfn(xf(x)對(duì)(abxf

在(a,f(xf(x在(abf(xf(x)n[f(x1)f 求證:在閉區(qū)間[abfn(xf(xf(x1)f證 f

(x)n[f(x1)f(x)] n

f(x)(n)0f(x在(abf(x在[ab連續(xù),因而一致連續(xù),故0x,x,,當(dāng)xx時(shí),f(xf(x).而f(x)f(x)n[f(x1)f(x)]fx

f(x1)f(x),0n

,即n ,就有f(x)f(x),取N11,則當(dāng)nN時(shí)

fnxfxx[abfn(xf(xf1(x)在[a,bRiemannxfn1(x)x

fn (n1,2,)證明f1(x在[abRiemannMf1(x)M.所以,

0x[abxxf2(x)

af1(t)dtaf1(t)dtM(xa)f(x)

f(t)dtx

xf(t)dt

xM(ta)dt1M(xa)2 a

f

(x)1M(xa)n,n1,2,故x[abf

(x)1M(xa)n1M(ba)n0(n) fn1x0n.即limfn(x)0

f(x),x[a,

f

(x)

1M(ba)n0n,故0NnN

fn1x0fn(x在[ab問參數(shù)

f(x)nxenx n1,2,n1在閉區(qū)間[01]收斂?在閉區(qū)間[01]一致收斂?使

f(x)dx解x0fn(x)0n1,2,當(dāng)0x1f(x)nxenxn

0(n)故不論參數(shù)fn(x)nxenx在閉區(qū)間[01]f(x)0nf(x)n[enxenx(n)nenx(1nx)nnf(xx1取最大fnn

1)n

nenn1e1 nx[0,1],f(x)n1e1nn故當(dāng)1n1e10nf(x在[01]f(x0.當(dāng)10e10NnN1nx1[01],但n 1nfn(xn)f(xn)

enn1e1e1n0n故fn(x在[01]不一致收斂101

(x)dx1nxenxdxnn0n

1xd(enx)n1[en0

1enx0n1[en1en1]n2en(n1)n2 0 0 0所以,當(dāng)2時(shí), fn(x)dx0,2時(shí), fn(x)dx1,2時(shí)111lim111lim0fn(x)dx0f(x)dx0當(dāng)2lim0

fn(x)dx可在積分號(hào)nf(x)nxenx2(n1,2在閉區(qū)間[01]n 0 0 0limfn(x)dx fn(x)dx 證明當(dāng)0x1f(x)nxenx20nx0f(x)0 limfn(x0x[01]0limfn(x)dx00dx0

1enx2d(nx2)1(1en)1f(x)dx1nxenx2dx

0 2 lim1fn(x)dxlim1(1en)101limfn(x)dxn n 0設(shè)fn(xn1,2在(,fn(x在(,f(xf(x在(,證明fn(x在(,f(x,故0NnNf(xf(x)x,成立 fN1x在(一致連續(xù),故對(duì)上述0,0,x1x2,,x1x2,就有fN

(x1)

N

)3從而x1x2x1x2,就f(x1)f(x2)f(x1)fN1(x1)fN1(x1)fN1(x2)fN1(x2)f(x2 f(x1)fN1(x1)

fN1(x1)fN1(x2)

fN1(x2)f(x2)

所以f(x)在(,上一致連續(xù)9fn(x)[a,b]fn(x)一致收f(x);又xn[abn1,2,滿limxnx0limfn(xnf(x0 證明由已f(x是[ab上的連續(xù)函數(shù),因而00x[abxx0時(shí),就f(x)f(x0) 2limxnx0xn[ab,故對(duì)上述0N1nN1時(shí),

xn

,f(xn)f(x0)2而fn(x)在[ab上一致收斂于f(x,故對(duì)上述0N2nN2時(shí)f(x)f(x) x[a,b一致地成立NmaxN1N2,則nN時(shí),同時(shí)成 fn(xn)f(xn)2 f(xn)f(x0)2nNfn(xn)f(x0)fn(xn)f(xn)f(xn)f(x0 因此limf(x)n

f(x0)

fn(xn)f(xn)

f(xn)f(x0

設(shè)fn(x)是在(ab內(nèi)一致收斂于f(x)x0a,blimfn(x)an(n1,2,)x xlimlimfn(x)limlimfn(x)nx xx0證明由于fn(x)是在(abf(xCauchy0NnmNfn(x)

(x)2xablimfn(xan(n1,2xx0xa

Cauchy收斂準(zhǔn)則,知lima

n為a,故0,N1,當(dāng)nN1時(shí),有ana 3又fn(x)是在(abf(x,故對(duì)上述0N2nN2xab一致地有f(xf(x) fN

(x)f(x)3

aN

a3limfN1xaN1,故0xabxx

xabx

fN1(x)aN13f(x)af(x)fN1(x)fN1(x)aN1aN1(x) (x)f(x)

a

N N Nlimf(x)a,即limlimfn(x)limlimfn(xx nx xx0

N fn(xn1,2在[abRiemann可積,且fn(x)在[ab一致收斂于f(xf(x在[abRiemann證明由于fn(x)在[abf(x,故0NnNf(x)f(x) 4(b,f

N

(x)f(x) 4(b,fN

(x) 4(b

f(x)

N

(x) 4(bx[abfN1x在[abRiemann00,對(duì)一切分劃,當(dāng)分劃的小區(qū)間的最大長度時(shí),就有n(N1)xn2 2其中(N1)M(N1)m(N1) (x) (x)(i1,2,,n) N1 xi1xxi xi1xxiMixi1x

f(x),而mi xi1x

f(xiMimiMM(N1) ,mm(N1) 4(b

(N1) i1,2,,n 2(b故當(dāng) n

(N1)

(N1) nnn

(i

)2(b

i

2(b

(ba) 2(bf(x在[abRiemann 函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性及其判別法 1(1) 21 n (2) n1n12x(1)n1x(3) n12n11x(4)

1n

1a2n解(1)x1x1xx1x

xn 而

當(dāng)x1時(shí)收斂,故 11

x1x1

x1xx1x1xx, xn x,1而

x

1xx

x1時(shí)絕對(duì)

xx1時(shí),級(jí)數(shù)的一般項(xiàng)分別為和2

的絕對(duì)收斂區(qū)域?yàn)?,)\{1,1}2x1,得1x1或1x1,因而當(dāng)1x2x

1

x n12x x1x3時(shí),由于2x1n1單調(diào)上升且有界,由n1 nnxn2xnnxn2x判別法知 收斂, n12x1

絕對(duì)收斂.所以絕對(duì)收斂域?yàn)?,1)(1,)111

(3)

1x11x0,因而當(dāng)x11x01x (1)n1x ,且 (n),故級(jí)數(shù)發(fā)散1x 2n11xx0時(shí),級(jí)數(shù)為2n111 111當(dāng)x0時(shí),由 1,因而級(jí)數(shù)(1)n 絕對(duì)收斂, 1x 2n(1)n1x減有界,由Abel判別法,這時(shí)級(jí)數(shù) 絕對(duì)收斂n12n11x所以級(jí)數(shù)

1x

絕對(duì)收斂域(0),條件收斂域x

,收斂域n12n11x[0,) 1

1

1時(shí),由于 n1a2nx

nx

a2

,由于級(jí) nx

a2

x0收斂,故

n1a2nxn對(duì)一切x0收斂,而當(dāng)x0時(shí),級(jí)數(shù)為 a1

n1a2nx

n(1x2

n(1x2因而

1a2nn

(1x)xn,x[0,1](1)n1x(2)(1x2)n,x(,)

(x)(1x)xk

1xns(x)0

0x1x1

(n)02

0,N,nN1N,xn

3[01]43sn(xn)s(xn)1

1

0 4 所以(1x)xn在[01

n 21 2n(1)k1x 2n 1x 1x(2)s(x) x x nk

(1x2

1xn1

1 x (1)n1 x

1x22x2 (1x2)n

s(x) (n)2x x sn(x

2x2x2x(x2n1 n21)(x2n1 n2

f(x(1x2f(x)

(2x2)2(1x2求得f(x)的穩(wěn)定點(diǎn)x0,x n21n1,可判定x0為極小值點(diǎn)f(0)0f(x0,故

f(0)0x

n21n

f n21nf n21n1n21n3(n21nn21n21n

2n21n21n

(n1時(shí)n21n

3n0(n)

(4n

2sn(x)

f(x)f

n21n1)

(n1故0N1nNsn(xs(x)x,

(1)n1x sn(x)在 )一致收斂于s(x),因此函數(shù)項(xiàng)級(jí)

(1x2

)一致x2x斂于和函數(shù)s(x) 2x(1)

sin4

,x(,)4

nx(2)1n4x2,x(,)

(1)n(1enx,x[0,)n2x

sin

,x(2,)n1x 1n5x2,x(,)

(xnxn),1x22 2x2enx,x[0,)

xnlnn, [0,1]n2

x21 n

x2

,x(,)x(10)n,xr1x(11)

ln1,x[a,),aln1n4n4x解(1)

4x,成立,而

4知級(jí)數(shù)

sin

n在(,

n1n

nxx(2)由 1對(duì)一切x(,)成立,而1收斂xx1n4x

2n4x

2n n1故級(jí)數(shù)1n4x2在(,n2x (1)n(1n2x[0一致收

2x[0成立,故nn

n2x x

2n

12n

(n2)x2而級(jí)數(shù)

1收斂,因而

sin 在(2 )一致 n1

n1xn 對(duì)x(,)一致地成立所以 n1n5x

n11n5x2n2 2n(,)一致的nn

xn)

n(x22

xn)

n22n112n2n2

x2(n1)2

2n

n2且由于

10,所以級(jí)數(shù)

因而

n2(xnxn1x222(7)當(dāng)x0時(shí),enx1nx1n2x21n2x2,所以enx ,故x0時(shí) n2x2

2 x 2x0顯然也成立,故由2Mx 在[0一致(8)f(x)xlnxf(x)lnx1x1x1e1.又limxlnx0f(1)0f(xx[01]

( f(0)0.因而x[01]f(x)1e|xnlnnx (xln 所

xnlnn在[01]一致收斂(9)因?yàn)閚2

x21n

x2 ( 1)( 1x21

(n

n

n x21(nx21(n

x2

x2 n(n n n(n

1(n

,x(,)(n(n 2收斂,故原級(jí)數(shù)在(,)一致收斂n

nn,而limn

limn111,故

nnnn

n n1

x因而nxr1x(11) 1nx1 1 limln1

0 對(duì)x[a,)(a1)一致地成立,故N當(dāng)nN時(shí) nln(1nx)

1 ln1而an收斂,因而

在[a)(a1 cos(1)

,x(,)n2x(2)

nx

,x[0,2]x(3) ,x(1,x (4)nsinx,x(,)

sin13n

x(0,)n

,xa

,x 0] x(1)n

2n解(1)由于級(jí)數(shù)

3n

2k

k2

3

2sin 3333

有 ,因而在(,)一致有界,對(duì)每一固定的x(,),數(shù)列 3

n2x2

0,n2x2cos 判別法,知

n2x

在(,由于級(jí)數(shù)sinxsinnx nsinxsinkx 22 sin

xcos

cos2n1x cos2 k k 有界2,因而在[02一致有界,對(duì)每個(gè)固定的x[02,數(shù)

nx

sinxsinn時(shí),函數(shù)序列

在[02一致收斂

nx

n 級(jí)數(shù)(1)n的部分和序列(1)k有界1,因而在(1, k 列xnx1,0,故xn在(1,

kbn(x1)an(x)nsinxbx

1k1

kan(x)nsinx對(duì)每個(gè)x,)單調(diào)遞減,且對(duì)所有x,),有1n1nsinn

(x) nsin

判別法,知nsinx在(,1 12 12 1n2n ,而級(jí)數(shù) 收斂,故2nn3n x3 x3 3nx0)絕對(duì)收斂,從而收斂.但由于010NnN1Nxn

3n

x2nx

2n

3n 23n

2n 因而級(jí)數(shù)的一般項(xiàng)

sin 在(0

3n

3n取bn(x)

an(x) 3n2nbk(x)

k kna(x) x:xan3n2an

10(n),3n2 3n

(1) 因此數(shù)列

3n2ex在 a一致趨于0,因此,函數(shù)項(xiàng)級(jí)數(shù)3n2exxa取an(x)

1xn,bn(x)x,則n,有bk(x) 1xnk k an(x)

0,因此在[1,0一致趨于零,所以nn

在[1,0n取

(x)(1)nx2n1,a(x) 2nn

,則an(x)單調(diào)下降且在[1,1]一致nnbkk

(1)kxk

21x

x在[1,1]一致收斂x2n證明級(jí)數(shù)

n

,2 x收斂;而級(jí)斂(1x2)n雖在(,

k證明取bn(x) ,an(x)nx2,則n,bk(x)k k

a(x) 對(duì)每個(gè)x單調(diào)遞減,且由于

a(x)10n)a(x) n

(,)一致趨于0,由Dirichlet判斷法,級(jí)數(shù)

n

x在(2致收斂.但xNnNnx2nN

1n1nx

1nxn1nx

1 而2n發(fā)散,因此 發(fā)散,即 x而對(duì)級(jí)數(shù)(1x2)nx0x0

x2

x(1x22n(1x(1x22 x所以級(jí)數(shù)(1x2)nx x x 2n 1s(x),(1x

1x21

1x

sn(x)s(x)1(1x2)n1(1x2)n由lim1

1n

e3,故N1n

1n

3.03

0,NnmaxN1,NNx 1, sn(xn)s(xn)

1n30 n x因此(1x2)n在(設(shè)每一項(xiàng)n(x都是[a,b上的單調(diào)函數(shù),如果n(x在[a,b,證明由于n(x)都是[ab上的單調(diào)函數(shù),不妨設(shè)為單調(diào)增函數(shù),則x[a,b(a)(x(b,因此x[ab(x)max(a),(b,由于 n(x)在[a,b的端點(diǎn)為絕對(duì)收斂,因此級(jí)數(shù)max(a),n(b收斂,由

法,知級(jí)數(shù)n(x在[a,b 若un(xun(x)cn(xxX,并且cn(xX 證明un(xX證明由于cn(xX上一致收斂,由Cauchy原理,0xNn nnN,p,x[ab,都有ck(x)ck(xnN時(shí),pk k

nukk

nuk(x)k

nck(x,同樣由Cauchyk un(xX上一致收斂;又由于xXun

cn

,而cn(x)un(x§12.3(1)xn

1x1(2)xn

1x1n1n(3)2n

x1;(4)(xn)(xn1),0x (5)1n2x2 x0(6)

n

x (7)1n4x2 x0 x(8)(1x2)n x解(1)x01,1)x01x0r1xrs(xxnxrs(xxrx0連續(xù),由x0(1,1)的任意性知級(jí)數(shù)所表示的函數(shù)在(1,1)連續(xù)(2)x0[1,1)r0x0r1,則在[1,1)bn(x)xn

bk(x)

xk ,而an(x)1單調(diào)遞減趨于an(x) ,則nn

k

k

nn因而在[1,r) nn1

一致收斂于其和函數(shù)s(x),又級(jí)數(shù)的每一項(xiàng)函 在[1,r)n級(jí)數(shù)所表示的函數(shù)在[1,1)2 2由

2 n n

nnx nn在區(qū)間[1,1]一致收斂,而級(jí)數(shù)的每一項(xiàng)2在[1,1]連續(xù),因而nn

x1

2,而

收斂,因此

(xn)(xn n(n

n1 (xn)(xn1)在(0(xn)(xn1在(0 續(xù),由連續(xù)性定理,級(jí)數(shù)(xn)(xn1)所表示的函數(shù)在(0 x0x000x0xx 1n2x

1n22n22,因?yàn)閚22收斂,故1n2x

xx

1在x上連續(xù),特別在x: 010n11n2x x0x00的任意性,知級(jí)數(shù)1n2x2x0

sin

在(,

sinnx

n,級(jí) 1n n

n

n1n斂,故級(jí)數(shù)

n

(,)一致收斂,因而級(jí)數(shù)

n

所表示的函數(shù)在(,x0x000,使0nn

x0x1 1n4x n4x

n3n3 而n3收斂,故1n4x2x一致收斂,又級(jí)數(shù)的每一項(xiàng)1n4x2x 續(xù),故級(jí)數(shù)1n4x2xx0x0x00 任意性知級(jí)數(shù)1n4x2x0x 和函數(shù)為s(x)1x21 1,x0;而x0時(shí),和為s(0)0,1x xs(xx0x0間斷,且為可去間斷點(diǎn),即級(jí)數(shù)(1x2)n在(0)0x0f(x)

sin在 )

在(,內(nèi)連續(xù),且x,1 sin而n3收斂,使用判別法,知級(jí)數(shù) 在(,)內(nèi)一致收斂,因而函f(x)

在(

sinnx 又 cosnx同樣 cosnx對(duì)每一個(gè)n在(,)cosnx n n1續(xù) cosn

1,x(,)一致收斂,因此f(x)可導(dǎo),且f(x)1cosxn2 n1n2

1設(shè)f(x) 21f(xx0f(xx0證明(1)x0enx1,故n

1,1n n

由n2收斂及判別法知1n2在[0一致收斂,級(jí)數(shù)的每一項(xiàng)1n 1[0,)連續(xù),因此f(x) 2在[0,)1(2)

0r0r

,而

1n2,由于n01n

1n 11nx[r,

1n

1n

enr,

1(n1)

er

故 enr收斂,由判別法知 在[r,)一致收斂,n11n

1n2 n11n f(xnenx在[rxx0f0n11n x0(k

(1)knke若設(shè) (x)

x0存在,即f(x)x0k次可微,則1n

nkenx

(1)k1nkx0000rx0,而

1n

1n[r連續(xù),且由nx[r,

1n1n

1n2 及 nk

1(n

er1n(1)k11n1知級(jí)數(shù) 1

收斂,由M

在[r1n因此

(k)(x)

(k

f(x)f

(1)k1nk存在且連續(xù)于[r,)1nx00f(xk1x00f(xk1f(xx0證明nenx在(0證 x00,0,使x0,在x[,)時(shí)級(jí)數(shù)的項(xiàng)nenx連續(xù), 所 nenx在[,)連續(xù),特別地在

,連續(xù),由x00的任意性,知nenx在(0設(shè)un(x在(ab

un(x)(n1,2)在[abun(x在[abs(x)un(x在[a,b證明(1)0,由于un(x在(ab內(nèi)一致收斂,Nx無關(guān),n

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論