




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第十二章數(shù)項(xiàng)級(jí)12.1f
(x)
x2nx
,x(,)fn(x)sinnⅰ)x(l,l) ⅱ)x(,)fn(x)1nx,x(0,1)f
(x) ,1ⅰ)x[a,) a0,ⅱ)x(0,)n2xfn(x)1n3x3?。﹛[a,) a0,ⅱ)x(0,)fn(x)xn1fn(x)1xn
x[0,1]?。﹛[0,b] b0,ⅱ)x[0,1],ⅲ)x[a,) a0fn(x)xnx2n,x[0,1]nf(x)xnxn1,x[0,1]n (10)fn(x)nlnn,x(0,1)f
(x)1ln1enx,x(,)nfn(x)e(xn)2?。﹛[l,l],ⅱ)x(,.解(1)x0
limfn
x2
xf(x)2fn(x)f(x)
x21n
1n1 n2
x2
x n n1N11nNxf(xf(x)
(x)
x2n
xf(x)xx(2)x(,),limfn(x)lim 0f(x) ⅰ)0xxnf(x)f(x) lxxn ln
,故Nl1,當(dāng)nN時(shí),有f(x)f(x) ,因此
(x)sinn在(llf(x)0 ⅱ)02
0,N,nN11,xn
212fn(xn)f(xn)sinx
1
02fn(x)sinn在()f(x)0(3)x(0,1)fn(x)1
11
f(x)(n)0 0NnN1Nxn nf(x)f(x)
nxn1111
1
1 fn(x)
1
在(01)不一致收斂到fx
x(0,),f(x) 0 1
f(x)(n)ⅰ)0
fn(x)f(x) 1 1 1 1
N11nN1
fn(xf(x),對(duì)x[afn(x)1nx在[aa0)f(x)0 ⅱ)0
20,N,nN1N,xn
nfn(xn)f(xn1
1
10121nfn(x1nx在(0f(x)0x
2 nx(0,),fn(x)1n3 n
1
0f(x)(n)3 ⅰ)0
n2x fn(x)f(x)
3n 1 1
N11nN
fn(x)f
,對(duì)x[an2xfn(x)1n31
在[aa0f(x)01ⅱ)0 0NnN1Nxn f(x)f(x)
nn n
0n2x 1n3 即fn(x)1n3 在(0,)不一致收斂于f(x)0 (6)fn(x)xn11n
x
f(x)(n,x[0,1]0
xx fn(x)f
1n
1n N21nN
fn(xf(x)x[01fn(xxn1在[01f(x)xix0,b,b iix iiixa,,afn(x)
0,0x1 1,x1
f(x)(n)1?。?
fn(x)f
1xnxb,x[0,b](b1)取N[logb]1,則當(dāng)n 時(shí),有fn(x)f(x)對(duì)x[0,b](b1)一fn(x)1xn在[0bb1f(x)0ⅱ)03
0,N,nN1N,xn1n11
f(x)f(x) 1 1 2fn(x)1
0,0x1 在[01f(x , ⅲ)0
1fn(x)f1
1 1xn
1,x[a,](a1)Nloga1,則當(dāng)nN
fn(xf(x)
(x) 在1 在[aa1f(x0n1
(x)lim(xnx2n)0
f(x),x[0,1]10 0NnN1Nxn2[01] f(x)f(x)
1121 121fn(xxnx2n在[01]f(x0n
(x)lim(xnxn1)0
f(x),x[0,1]fn(x)f
xnxn1g(x),由g(x)xn1nn1xg(x0xnn
,且0x n
g(x0,當(dāng)n
x1g(x0在x 達(dá)到[0,1]上的最大值,于是x[0,1],n n n n g(x) 1 n1 n n n n 0N11nN
fn(x)f(x)
對(duì)[0
nf(x)xnxn1在[01]f(x)0n (10)x(0,1),fn(x)nlnn0f(x)(n)00x1時(shí),由于limxlnx0,故00xn xnxxn
,故取N11,則當(dāng)nN時(shí),有0x ,從而,1
x01f(x)xlnx在(01)f(x)0 x0f
(x)1ln1enx0(n)n1x0fn(0)nln20n1當(dāng)x0時(shí),由于x1lnenx 1enx1lnenxenx1ln2x, nln2xx(nfn(xx(nf(x)1ln1enx在(,的極限函數(shù)fx0x0 x,x0,由于f(xf(x)1ln21,取N11,則當(dāng)nN fn(xf(x)xf
(x)1ln1enx在(,nf(x顯然limn
(x)lim
0f(x)ⅰ)0x[ll
fn(x)f
e(xn)2nl后,由于exn)2exl)2nl時(shí),有f(xf(x)e(xl)2nlnn f(x)f(x) l,取N lnl1,則當(dāng)nn
fn(x)f(x)
x[l
f(x)f(x)(xn) [l,nf(x)0ⅱ)
10N2
nN1N
)f
)11 nf(x)e(xn)2在(,f(x)0nfn(xn1,2在[ab上有界,并且fn(x)在[abfn(x在[a,b上一致證 由于fn(x)(n1,2,)在[a,b]上有界,故nN,Mn0,使x[abfn(x)Mnfn(x在[abf(x10NnN時(shí),有fn(xf(x)1,顯然fN1xf(x)1 f(x)fN1(x)1MN1fn(x)f(x)1MN12nNMmaxM1M2,MN,MN120,則xabn,fn(x)Mfn(x在[abf(x定義于(a,bfn(x)
(n1,2,)fn(x在(abf(x證明由于nf(x1nf(x)nf(xf(x)1f(x)nf(x)
f 因此limf(x)
f(xxab0,由于1
(xf(x)0nn n1N11,nN
fn(x)f(x)nfn(xf(x)對(duì)(abxf
在(a,f(xf(x在(abf(xf(x)n[f(x1)f 求證:在閉區(qū)間[abfn(xf(xf(x1)f證 f
(x)n[f(x1)f(x)] n
f(x)(n)0f(x在(abf(x在[ab連續(xù),因而一致連續(xù),故0x,x,,當(dāng)xx時(shí),f(xf(x).而f(x)f(x)n[f(x1)f(x)]fx
f(x1)f(x),0n
,即n ,就有f(x)f(x),取N11,則當(dāng)nN時(shí)
fnxfxx[abfn(xf(xf1(x)在[a,bRiemannxfn1(x)x
fn (n1,2,)證明f1(x在[abRiemannMf1(x)M.所以,
0x[abxxf2(x)
af1(t)dtaf1(t)dtM(xa)f(x)
f(t)dtx
xf(t)dt
xM(ta)dt1M(xa)2 a
f
(x)1M(xa)n,n1,2,故x[abf
(x)1M(xa)n1M(ba)n0(n) fn1x0n.即limfn(x)0
f(x),x[a,
f
(x)
1M(ba)n0n,故0NnN
fn1x0fn(x在[ab問參數(shù)
f(x)nxenx n1,2,n1在閉區(qū)間[01]收斂?在閉區(qū)間[01]一致收斂?使
f(x)dx解x0fn(x)0n1,2,當(dāng)0x1f(x)nxenxn
0(n)故不論參數(shù)fn(x)nxenx在閉區(qū)間[01]f(x)0nf(x)n[enxenx(n)nenx(1nx)nnf(xx1取最大fnn
1)n
nenn1e1 nx[0,1],f(x)n1e1nn故當(dāng)1n1e10nf(x在[01]f(x0.當(dāng)10e10NnN1nx1[01],但n 1nfn(xn)f(xn)
enn1e1e1n0n故fn(x在[01]不一致收斂101
(x)dx1nxenxdxnn0n
1xd(enx)n1[en0
1enx0n1[en1en1]n2en(n1)n2 0 0 0所以,當(dāng)2時(shí), fn(x)dx0,2時(shí), fn(x)dx1,2時(shí)111lim111lim0fn(x)dx0f(x)dx0當(dāng)2lim0
fn(x)dx可在積分號(hào)nf(x)nxenx2(n1,2在閉區(qū)間[01]n 0 0 0limfn(x)dx fn(x)dx 證明當(dāng)0x1f(x)nxenx20nx0f(x)0 limfn(x0x[01]0limfn(x)dx00dx0
1enx2d(nx2)1(1en)1f(x)dx1nxenx2dx
0 2 lim1fn(x)dxlim1(1en)101limfn(x)dxn n 0設(shè)fn(xn1,2在(,fn(x在(,f(xf(x在(,證明fn(x在(,f(x,故0NnNf(xf(x)x,成立 fN1x在(一致連續(xù),故對(duì)上述0,0,x1x2,,x1x2,就有fN
(x1)
N
)3從而x1x2x1x2,就f(x1)f(x2)f(x1)fN1(x1)fN1(x1)fN1(x2)fN1(x2)f(x2 f(x1)fN1(x1)
fN1(x1)fN1(x2)
fN1(x2)f(x2)
所以f(x)在(,上一致連續(xù)9fn(x)[a,b]fn(x)一致收f(x);又xn[abn1,2,滿limxnx0limfn(xnf(x0 證明由已f(x是[ab上的連續(xù)函數(shù),因而00x[abxx0時(shí),就f(x)f(x0) 2limxnx0xn[ab,故對(duì)上述0N1nN1時(shí),
xn
,f(xn)f(x0)2而fn(x)在[ab上一致收斂于f(x,故對(duì)上述0N2nN2時(shí)f(x)f(x) x[a,b一致地成立NmaxN1N2,則nN時(shí),同時(shí)成 fn(xn)f(xn)2 f(xn)f(x0)2nNfn(xn)f(x0)fn(xn)f(xn)f(xn)f(x0 因此limf(x)n
f(x0)
fn(xn)f(xn)
f(xn)f(x0
設(shè)fn(x)是在(ab內(nèi)一致收斂于f(x)x0a,blimfn(x)an(n1,2,)x xlimlimfn(x)limlimfn(x)nx xx0證明由于fn(x)是在(abf(xCauchy0NnmNfn(x)
(x)2xablimfn(xan(n1,2xx0xa
Cauchy收斂準(zhǔn)則,知lima
n為a,故0,N1,當(dāng)nN1時(shí),有ana 3又fn(x)是在(abf(x,故對(duì)上述0N2nN2xab一致地有f(xf(x) fN
(x)f(x)3
aN
a3limfN1xaN1,故0xabxx
xabx
fN1(x)aN13f(x)af(x)fN1(x)fN1(x)aN1aN1(x) (x)f(x)
a
N N Nlimf(x)a,即limlimfn(x)limlimfn(xx nx xx0
N fn(xn1,2在[abRiemann可積,且fn(x)在[ab一致收斂于f(xf(x在[abRiemann證明由于fn(x)在[abf(x,故0NnNf(x)f(x) 4(b,f
N
(x)f(x) 4(b,fN
(x) 4(b
f(x)
N
(x) 4(bx[abfN1x在[abRiemann00,對(duì)一切分劃,當(dāng)分劃的小區(qū)間的最大長度時(shí),就有n(N1)xn2 2其中(N1)M(N1)m(N1) (x) (x)(i1,2,,n) N1 xi1xxi xi1xxiMixi1x
f(x),而mi xi1x
f(xiMimiMM(N1) ,mm(N1) 4(b
(N1) i1,2,,n 2(b故當(dāng) n
(N1)
(N1) nnn
(i
)2(b
i
2(b
(ba) 2(bf(x在[abRiemann 函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性及其判別法 1(1) 21 n (2) n1n12x(1)n1x(3) n12n11x(4)
1n
1a2n解(1)x1x1xx1x
xn 而
當(dāng)x1時(shí)收斂,故 11
x1x1
x1xx1x1xx, xn x,1而
x
1xx
x1時(shí)絕對(duì)
xx1時(shí),級(jí)數(shù)的一般項(xiàng)分別為和2
的絕對(duì)收斂區(qū)域?yàn)?,)\{1,1}2x1,得1x1或1x1,因而當(dāng)1x2x
1
x n12x x1x3時(shí),由于2x1n1單調(diào)上升且有界,由n1 nnxn2xnnxn2x判別法知 收斂, n12x1
絕對(duì)收斂.所以絕對(duì)收斂域?yàn)?,1)(1,)111
(3)
1x11x0,因而當(dāng)x11x01x (1)n1x ,且 (n),故級(jí)數(shù)發(fā)散1x 2n11xx0時(shí),級(jí)數(shù)為2n111 111當(dāng)x0時(shí),由 1,因而級(jí)數(shù)(1)n 絕對(duì)收斂, 1x 2n(1)n1x減有界,由Abel判別法,這時(shí)級(jí)數(shù) 絕對(duì)收斂n12n11x所以級(jí)數(shù)
1x
絕對(duì)收斂域(0),條件收斂域x
,收斂域n12n11x[0,) 1
1
1時(shí),由于 n1a2nx
nx
a2
,由于級(jí) nx
a2
x0收斂,故
n1a2nxn對(duì)一切x0收斂,而當(dāng)x0時(shí),級(jí)數(shù)為 a1
n1a2nx
n(1x2
n(1x2因而
1a2nn
(1x)xn,x[0,1](1)n1x(2)(1x2)n,x(,)
(x)(1x)xk
1xns(x)0
0x1x1
(n)02
0,N,nN1N,xn
3[01]43sn(xn)s(xn)1
1
0 4 所以(1x)xn在[01
n 21 2n(1)k1x 2n 1x 1x(2)s(x) x x nk
(1x2
1xn1
1 x (1)n1 x
1x22x2 (1x2)n
s(x) (n)2x x sn(x
2x2x2x(x2n1 n21)(x2n1 n2
f(x(1x2f(x)
(2x2)2(1x2求得f(x)的穩(wěn)定點(diǎn)x0,x n21n1,可判定x0為極小值點(diǎn)f(0)0f(x0,故
f(0)0x
n21n
f n21nf n21n1n21n3(n21nn21n21n
2n21n21n
(n1時(shí)n21n
3n0(n)
(4n
2sn(x)
f(x)f
n21n1)
(n1故0N1nNsn(xs(x)x,
(1)n1x sn(x)在 )一致收斂于s(x),因此函數(shù)項(xiàng)級(jí)
(1x2
在
)一致x2x斂于和函數(shù)s(x) 2x(1)
sin4
,x(,)4
nx(2)1n4x2,x(,)
(1)n(1enx,x[0,)n2x
sin
,x(2,)n1x 1n5x2,x(,)
(xnxn),1x22 2x2enx,x[0,)
xnlnn, [0,1]n2
x21 n
x2
,x(,)x(10)n,xr1x(11)
ln1,x[a,),aln1n4n4x解(1)
4x,成立,而
4知級(jí)數(shù)
sin
n在(,
n1n
nxx(2)由 1對(duì)一切x(,)成立,而1收斂xx1n4x
2n4x
2n n1故級(jí)數(shù)1n4x2在(,n2x (1)n(1n2x[0一致收
2x[0成立,故nn
n2x x
2n
12n
(n2)x2而級(jí)數(shù)
1收斂,因而
sin 在(2 )一致 n1
n1xn 對(duì)x(,)一致地成立所以 n1n5x
n11n5x2n2 2n(,)一致的nn
xn)
n(x22
xn)
n22n112n2n2
x2(n1)2
2n
n2且由于
10,所以級(jí)數(shù)
因而
n2(xnxn1x222(7)當(dāng)x0時(shí),enx1nx1n2x21n2x2,所以enx ,故x0時(shí) n2x2
2 x 2x0顯然也成立,故由2Mx 在[0一致(8)f(x)xlnxf(x)lnx1x1x1e1.又limxlnx0f(1)0f(xx[01]
( f(0)0.因而x[01]f(x)1e|xnlnnx (xln 所
xnlnn在[01]一致收斂(9)因?yàn)閚2
x21n
x2 ( 1)( 1x21
(n
n
n x21(nx21(n
x2
x2 n(n n n(n
1(n
,x(,)(n(n 2收斂,故原級(jí)數(shù)在(,)一致收斂n
nn,而limn
limn111,故
nnnn
n n1
x因而nxr1x(11) 1nx1 1 limln1
0 對(duì)x[a,)(a1)一致地成立,故N當(dāng)nN時(shí) nln(1nx)
1 ln1而an收斂,因而
在[a)(a1 cos(1)
,x(,)n2x(2)
nx
,x[0,2]x(3) ,x(1,x (4)nsinx,x(,)
sin13n
x(0,)n
,xa
,x 0] x(1)n
2n解(1)由于級(jí)數(shù)
3n
2k
k2
3
2sin 3333
有 ,因而在(,)一致有界,對(duì)每一固定的x(,),數(shù)列 3
n2x2
0,n2x2cos 判別法,知
n2x
在(,由于級(jí)數(shù)sinxsinnx nsinxsinkx 22 sin
xcos
cos2n1x cos2 k k 有界2,因而在[02一致有界,對(duì)每個(gè)固定的x[02,數(shù)
nx
sinxsinn時(shí),函數(shù)序列
在[02一致收斂
nx
n 級(jí)數(shù)(1)n的部分和序列(1)k有界1,因而在(1, k 列xnx1,0,故xn在(1,
kbn(x1)an(x)nsinxbx
1k1
kan(x)nsinx對(duì)每個(gè)x,)單調(diào)遞減,且對(duì)所有x,),有1n1nsinn
(x) nsin
判別法,知nsinx在(,1 12 12 1n2n ,而級(jí)數(shù) 收斂,故2nn3n x3 x3 3nx0)絕對(duì)收斂,從而收斂.但由于010NnN1Nxn
3n
x2nx
2n
3n 23n
2n 因而級(jí)數(shù)的一般項(xiàng)
sin 在(0
3n
3n取bn(x)
an(x) 3n2nbk(x)
k kna(x) x:xan3n2an
10(n),3n2 3n
(1) 因此數(shù)列
3n2ex在 a一致趨于0,因此,函數(shù)項(xiàng)級(jí)數(shù)3n2exxa取an(x)
1xn,bn(x)x,則n,有bk(x) 1xnk k an(x)
0,因此在[1,0一致趨于零,所以nn
在[1,0n取
(x)(1)nx2n1,a(x) 2nn
,則an(x)單調(diào)下降且在[1,1]一致nnbkk
(1)kxk
21x
x在[1,1]一致收斂x2n證明級(jí)數(shù)
n
,2 x收斂;而級(jí)斂(1x2)n雖在(,
k證明取bn(x) ,an(x)nx2,則n,bk(x)k k
a(x) 對(duì)每個(gè)x單調(diào)遞減,且由于
a(x)10n)a(x) n
(,)一致趨于0,由Dirichlet判斷法,級(jí)數(shù)
n
x在(2致收斂.但xNnNnx2nN
1n1nx
1nxn1nx
1 而2n發(fā)散,因此 發(fā)散,即 x而對(duì)級(jí)數(shù)(1x2)nx0x0
x2
x(1x22n(1x(1x22 x所以級(jí)數(shù)(1x2)nx x x 2n 1s(x),(1x
1x21
1x
sn(x)s(x)1(1x2)n1(1x2)n由lim1
1n
e3,故N1n
1n
3.03
0,NnmaxN1,NNx 1, sn(xn)s(xn)
1n30 n x因此(1x2)n在(設(shè)每一項(xiàng)n(x都是[a,b上的單調(diào)函數(shù),如果n(x在[a,b,證明由于n(x)都是[ab上的單調(diào)函數(shù),不妨設(shè)為單調(diào)增函數(shù),則x[a,b(a)(x(b,因此x[ab(x)max(a),(b,由于 n(x)在[a,b的端點(diǎn)為絕對(duì)收斂,因此級(jí)數(shù)max(a),n(b收斂,由
法,知級(jí)數(shù)n(x在[a,b 若un(xun(x)cn(xxX,并且cn(xX 證明un(xX證明由于cn(xX上一致收斂,由Cauchy原理,0xNn nnN,p,x[ab,都有ck(x)ck(xnN時(shí),pk k
nukk
nuk(x)k
nck(x,同樣由Cauchyk un(xX上一致收斂;又由于xXun
cn
,而cn(x)un(x§12.3(1)xn
1x1(2)xn
1x1n1n(3)2n
x1;(4)(xn)(xn1),0x (5)1n2x2 x0(6)
n
x (7)1n4x2 x0 x(8)(1x2)n x解(1)x01,1)x01x0r1xrs(xxnxrs(xxrx0連續(xù),由x0(1,1)的任意性知級(jí)數(shù)所表示的函數(shù)在(1,1)連續(xù)(2)x0[1,1)r0x0r1,則在[1,1)bn(x)xn
bk(x)
xk ,而an(x)1單調(diào)遞減趨于an(x) ,則nn
k
k
nn因而在[1,r) nn1
一致收斂于其和函數(shù)s(x),又級(jí)數(shù)的每一項(xiàng)函 在[1,r)n級(jí)數(shù)所表示的函數(shù)在[1,1)2 2由
2 n n
nnx nn在區(qū)間[1,1]一致收斂,而級(jí)數(shù)的每一項(xiàng)2在[1,1]連續(xù),因而nn
x1
2,而
收斂,因此
(xn)(xn n(n
n1 (xn)(xn1)在(0(xn)(xn1在(0 續(xù),由連續(xù)性定理,級(jí)數(shù)(xn)(xn1)所表示的函數(shù)在(0 x0x000x0xx 1n2x
1n22n22,因?yàn)閚22收斂,故1n2x
xx
1在x上連續(xù),特別在x: 010n11n2x x0x00的任意性,知級(jí)數(shù)1n2x2x0
sin
在(,
sinnx
n,級(jí) 1n n
n
n1n斂,故級(jí)數(shù)
n
(,)一致收斂,因而級(jí)數(shù)
n
所表示的函數(shù)在(,x0x000,使0nn
x0x1 1n4x n4x
n3n3 而n3收斂,故1n4x2x一致收斂,又級(jí)數(shù)的每一項(xiàng)1n4x2x 續(xù),故級(jí)數(shù)1n4x2xx0x0x00 任意性知級(jí)數(shù)1n4x2x0x 和函數(shù)為s(x)1x21 1,x0;而x0時(shí),和為s(0)0,1x xs(xx0x0間斷,且為可去間斷點(diǎn),即級(jí)數(shù)(1x2)n在(0)0x0f(x)
sin在 )
在(,內(nèi)連續(xù),且x,1 sin而n3收斂,使用判別法,知級(jí)數(shù) 在(,)內(nèi)一致收斂,因而函f(x)
在(
sinnx 又 cosnx同樣 cosnx對(duì)每一個(gè)n在(,)cosnx n n1續(xù) cosn
1,x(,)一致收斂,因此f(x)可導(dǎo),且f(x)1cosxn2 n1n2
1設(shè)f(x) 21f(xx0f(xx0證明(1)x0enx1,故n
1,1n n
由n2收斂及判別法知1n2在[0一致收斂,級(jí)數(shù)的每一項(xiàng)1n 1[0,)連續(xù),因此f(x) 2在[0,)1(2)
0r0r
,而
1n2,由于n01n
1n 11nx[r,
1n
1n
enr,
1(n1)
er
故 enr收斂,由判別法知 在[r,)一致收斂,n11n
1n2 n11n f(xnenx在[rxx0f0n11n x0(k
(1)knke若設(shè) (x)
x0存在,即f(x)x0k次可微,則1n
nkenx
(1)k1nkx0000rx0,而
1n
1n[r連續(xù),且由nx[r,
1n1n
1n2 及 nk
1(n
er1n(1)k11n1知級(jí)數(shù) 1
收斂,由M
在[r1n因此
(k)(x)
(k
f(x)f
(1)k1nk存在且連續(xù)于[r,)1nx00f(xk1x00f(xk1f(xx0證明nenx在(0證 x00,0,使x0,在x[,)時(shí)級(jí)數(shù)的項(xiàng)nenx連續(xù), 所 nenx在[,)連續(xù),特別地在
,連續(xù),由x00的任意性,知nenx在(0設(shè)un(x在(ab
un(x)(n1,2)在[abun(x在[abs(x)un(x在[a,b證明(1)0,由于un(x在(ab內(nèi)一致收斂,Nx無關(guān),n
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030女裝船襪行業(yè)行業(yè)風(fēng)險(xiǎn)投資發(fā)展分析及投資融資策略研究報(bào)告
- 2025-2030基于細(xì)胞的檢測(cè)行業(yè)市場(chǎng)現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 2025-2030國內(nèi)超級(jí)計(jì)算機(jī)行業(yè)市場(chǎng)發(fā)展現(xiàn)狀及競(jìng)爭(zhēng)格局與投資發(fā)展前景研究報(bào)告
- 2025-2030國內(nèi)電動(dòng)升降桌行業(yè)深度分析及競(jìng)爭(zhēng)格局與發(fā)展前景預(yù)測(cè)研究報(bào)告
- 2025-2030國內(nèi)氣泡膜紙箱行業(yè)市場(chǎng)發(fā)展現(xiàn)狀及競(jìng)爭(zhēng)格局與投資發(fā)展前景研究報(bào)告
- 2025-2030固定的魚類發(fā)現(xiàn)者行業(yè)市場(chǎng)現(xiàn)狀供需分析及重點(diǎn)企業(yè)投資評(píng)估規(guī)劃分析研究報(bào)告
- 2025-2030商業(yè)印刷加工行業(yè)市場(chǎng)深度分析及競(jìng)爭(zhēng)格局與投資價(jià)值研究報(bào)告
- 2025-2030可食性包裝膜產(chǎn)業(yè)市場(chǎng)發(fā)展分析及發(fā)展趨勢(shì)與投資研究報(bào)告
- 2025-2030口腔診所行業(yè)市場(chǎng)深度分析及發(fā)展策略研究報(bào)告
- 2025-2030雙螺旋分類器行業(yè)市場(chǎng)現(xiàn)狀供需分析及重點(diǎn)企業(yè)投資評(píng)估規(guī)劃分析研究報(bào)告
- 斜屋面專項(xiàng)施工方案-掛瓦坡屋面(附圖)
- 世界節(jié)水日主題班會(huì)幻燈片PPT模板課件
- 《有效利用鄉(xiāng)土資源開展主題活動(dòng)的實(shí)踐研究》課題
- 《紅樓夢(mèng)飲食文化研究》
- 合成氣生產(chǎn)甲醇工藝流程圖
- 03J111-1輕鋼龍骨內(nèi)隔墻
- KIP3000故障代碼
- 項(xiàng)目三 電子生日蠟燭的制作-單元3 D觸發(fā)器ppt課件
- 納入仕樣書xls
- 土地整治項(xiàng)目監(jiān)理工作總結(jié)報(bào)告
- 商業(yè)銀行票據(jù)業(yè)務(wù)知識(shí)考試試題
評(píng)論
0/150
提交評(píng)論