




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Chapter4
DecisionAnalysis(2010)Decisionsoftenmustbemadeinenvironmentsthataremuchmorefraughtwithuncertainty.Example:TheGOFERBROKECOMPANYownsatractoflandthatmaycontainoil.Aconsultinggeologisthasreportedtomanagementthatshebelievesthereis1chancein4ofoil.Becauseofthisprospect,anotheroilcompanyhasofferedtopurchasethelandfor$90,000.However,Goferbrokeisconsideringholdingthelandinordertodrillforoilitself.Thecostofdrillingis$100,000.Ifoilisfound,theresultingexpectedrevenuewillbe$800,000,sothecompany'sexpectedprofit(afterdeductingthecostofdrilling)willbe$700,000.Alossof$100,000(thedrillingcost)willbeincurredifthelandisdry(nooil).Howtoapproachthedecisionofwhethertodrillorsellbasedjustonthesedata.(WewillrefertothisasthefirstGoferbrokeCblem.)However,beforedecidingwhethertodrillorsell,anotheroptionistoconductadetailedseismicsurveyofthelandtoobtainabetterestimateoftheprobabilityoffindingoil.1.Amanufacturerintroducinganewproductintothemarketplace.Whatwillbethereactionofpotentialcustomers?Howmuchshouldbeproduced?Shouldtheproductbetestmarketedinasmallregionbeforedecidinguponfulldistribution?Howmuchadvertisingisneededtolaunchtheproductsuccessfully?2.Afinancialfirminvestinginsecurities.Whicharethemarketsectorsandindividualsecuritieswiththebestprospects?Whereistheeconomyheaded?Howaboutinterestrates?Howshouldthesefactorsaffecttheinvestmentdecisions?3.Agovernmentcontractorbiddingonanewcontract.Whatwillbetheactualcostsoftheproject?Whichothercompaniesmightbebidding?Whataretheirlikelybids?5.Anoilcompanydecidingwhethertodrillforoilinaparticularlocation.Howlikelyisoilthere?Howmuch?Howdeepwilltheyneedtodrill?Shouldgeologistsinvestigatethesitefurtherbeforedrilling?
Thesearethekindsofdecisionmakinginthefaceofgreatuncertaintythatdecisionanalysisisdesignedtoaddress.Decisionanalysisprovidesaframeworkandmethodologyforrationaldecisionmakingwhentheoutcomesareuncertain.
Frequently,onequestiontobeaddressedwithdecisionanalysisiswhethertomaketheneededdecisionimmediatelyortofirstdosometesting(atsomeexpense)toreducethelevelofuncertaintyabouttheoutcomeofthedecision.Thefirstsectionintroducesaprototypeexamplethatwillbecarriedthroughoutthechapterforillustrativepurposes.Sections4.2and4.3thenpresentthebasicprinciplesofdecisionmakingwithoutexperimentationanddecisionmakingwithexperimentation.Wenextdescribedecisiontrees,ausefultoolfordepictingandanalyzingthedecisionprocesswhenaseriesofdecisionsneedstobemade.4.1APROTOTYPEEXAMPLETheGOFERBROKECOMPANYownsatractoflandthatmaycontainoil.Aconsultinggeologisthasreportedtomanagementthatshebelievesthereis1chancein4ofoil.Becauseofthisprospect,anotheroilcompanyhasofferedtopurchasethelandfor$90,000.However,Goferbrokeisconsideringholdingthelandinordertodrillforoilitself.Thecostofdrillingis$100,000.Ifoilisfound,theresultingexpectedrevenuewillbe$800,000,sothecompany'sexpectedprofit(afterdeductingthecostofdrilling)willbe$700,000.Alossof$100,000(thedrillingcost)willbeincurredifthelandisdry(nooil).Table4.1summarizesthesedata.Section4.2discusseshowtoapproachthedecisionofwhethertodrillorsellbasedjustonthesedata.(WewillrefertothisasthefirstGoferbrokeCblem.)However,beforedecidingwhethertodrillorsell,anotheroptionistoconductadetailedseismicsurveyofthelandtoobtainabetterestimateoftheprobabilityoffindingoil.Section4.3discussesthiscaseofdecisionmakingwithexperimentation,atwhichpointthenecessaryadditionaldatawillbeprovided.Foreachcombinationofanactionandastateofnature,thedecisionmakerknowswhattheresultingpayoffwouldbe.Thepayoffisaquantitativemeasureofthevaluetothedecisionmakeroftheconsequencesoftheoutcome.Iftheconsequencesoftheoutcomedonotbecomecompletelycertainevenwhenthestateofnatureisgiven,thenthepayoffbecomesanexpectedvalue(inthestatisticalsense)ofthemeasureoftheconsequences.Apayofftablecommonlyisusedtoprovidethepayoffforeachcombinationofanactionandastateofnature.Thedecisionanalysisframeworkcanbesummarizedasfollows:
1.Thedecisionmakerneedstochooseoneofthealternativeactions.2.Naturethenwouldchooseoneofthepossiblestatesofnature.3.Eachcombinationofanactionandstateofnaturewouldresultinapayoff;whichisgivenasoneoftheentriesinapayofftable.4.Thispayofftableshouldbeusedtofindanoptimalactionforthedecisionmakeraccordingtoanappropriatecriterion.Oneadditionalelementneedstobeaddedinthedecisionanalysisframework.Thedecisionmakergenerallywillhavesomeinformationthatshouldbetakenintoaccountabouttherelativelikelihoodofthepossiblestatesofnature.Suchinformationcanusuallybetranslatedtoaprobabilitydistribution,actingasthoughthestateofnatureisarandomvariable,inwhichcasethisdistributionisreferredtoasapriordistribution.
Priordistributionsareoftensubjectiveinthattheymaydependupontheexperienceorintuitionofanindividual.Theprobabilitiesfortherespectivestatesofnatureprovidedbythepriordistributionarecalledpriorprobabilities.4.2.2CharacteristicsofDecisionAnalysis1.DeterministicDecisionAnalysis2.IndeterminableDecisionAnalysis3.ProbabilityDecisionAnalysis(1)Goal(2)Actions(3)CertainNature(4)PayoffGoal(2)Actions(3)Uncertain
Nature(4)Noknowledgeaboutprobabilityofnature(5)Payoff(1)Goal(2)Actions(3)Nature(4)Payoff(5)Probability4.2.3FormulationofthePrototypeExampleinThisFramework
AsindicatedinTable4.1,theGoferbrokeCo.hastwopossibleactionsunderconsideration:drillforoilorselltheland.
Thepossiblestatesofnaturearethatthelandcontainsoilandthatitdoesnot,asdesignatedinthecolumnheadingsofTable4.1byoilanddry.Sincetheconsultinggeologisthasestimatedthatthereis1chancein4ofoil(andso3chancesin4ofnooil),thepriorprobabilitiesofthetwostatesofnatureare0.25and0.75,respectively.Therefore,withthepayoffinunitsofthousandsofdollarsofprofit,thepayofftablecanbeobtaineddirectlyfromTable4.1,asshowninTable4.2.
StateofNatureAlternativeOilDry1.DrillforOil700-1002.SelltheLand9090ChanceofStatus0.250.75(1)TheMaxiMaxPayoffCriterionMaximaxpayoffcriterion:Foreachpossibleaction,findthemaximumpayoffoverallpossiblestatesofnature.Next,findthemaximumofthesemaximumpayoffs.Choosetheactionwhosemaximumpayoffgivesthismaximum.
StateofNatureMaximaxpayoffMaximuxSavageAlternativeOilDry1.DrillforOil700-1007002.SelltheLand909090700Action:DrillforOilTherationaleforthiscriterionisthatitprovidesthebestguaranteeofthepayoffthatwillbeobtained.Regardlessofwhatthetruestateofnatureturnsouttobefortheexample,thepayofffromsellingthelandcannotbelessthan90,whichprovidesthebestavailableguarantee.Thus,thiscriteriontakesthepessimisticviewpointthat,regardlessofwhichactionisselected,theworststateofnatureforthatactionislikelytooccur,soweshouldchoosetheactionwhichprovidesthebestpayoffwithitsworststateofnature.Thisrationaleisquitevalidwhenoneiscompetingagainstarationalandmalevolentopponent.However,thiscriterionisnotoftenusedingamesagainstnaturebecauseitisanextremelyconservative(保守的)criterioninthiscontext.Ineffect,itassumesthatnatureisaconsciousopponentthatwantstoinflictasmuchdamageaspossibleonthedecisionmaker.Natureisnotamalevolentopponent,andthedecisionmakerdoesnotneedtofocussolelyontheworstpossiblepayofffromeachaction.Thisisespeciallytruewhentheworstpossiblepayofffromanactioncomesfromarelativelyunlikelystateofnature.
Thus,thiscriterionnormallyisofinterestonlytoaverycautiousdecisionmaker.(3)TheSavageruleCriterion(后悔值法)Criterion:Foreachpossiblenaturestate,findthemaximumpayoffoverallpossiblealternativeactives.Next,findthedifferenceofeachactivepayoffcomparingwiththemaximumpayoff.Choosethemaximumdifferenceofeveryactive,afterthatselecttheactionwhosedifferencegivestheminimum.
StateofNatureSavageRuleAlternativeOilDryMax1.DrillforOil700(0)-100(190)1902.SelltheLand90(610)90(0)610Minimum190Action:DrillforOil
StateofNatureAlternativeOilDry1.DrillforOil700-1002.SelltheLand9090Probability0.50.5(4)TheEquivalentProbabilityCriterionSolutionofProbabilityanalysis:
TheMaximumLikelihoodCriterionMaximumlikelihoodcriterion:Identifythemostlikelystateofnature(theonewiththelargestpriorprobability).Forthisstateofnature,findtheactionwiththemaximumpayoff.Choosethisaction.Theappealofthiscriterionisthatthemostimportantstateofnatureisthemostlikelyone,sotheactionchosenisthebestoneforthisparticularlyimportantstateofnature.Basingthedecisionontheassumptionthatthisstateofnaturewilloccurtendstogiveabetterchanceofafavorableoutcomethanassuminganyotherstateofnature.Furthermore,thecriteriondoesnotrelyonquestionablesubjectiveestimatesoftheprobabilitiesoftherespectivestatesofnatureotherthanidentifyingthemostlikelystate.Themajordrawbackofthecriterionisthatitcompletelyignoresmuchrelevantinformation.Nostateofnatureisconsideredotherthanthemostlikelyone.Inaproblemwithmanypossiblestatesofnature,theprobabilityofthemostlikelyonemaybequitesmall,sofocusingonjustthisonestateofnatureisquiteunwarranted.Ineffect,thecriteriondoesnotpermitgamblingonalow-probabilitybigpayoff,nomatterhowattractivethegamblemaybe.
StateofNatureMaximinpayoffMaximuxlikelihoodAlternativeOilDry1.DrillforOil700-100-1002.SelltheLand909090900.250.75900.75Action:SelltheLandSolutionofProbabilityanalysis:Bayes'DecisionRulerBayes'decisionrule:Usingthebestavailableestimatesoftheprobabilitiesoftherespectivestatesofnature(currentlythepriorprobabilities),calculatetheexpectedvalueofthepayoffforeachofthepossibleactions.Choosetheactionwiththemaximumexpectedpayoff.Fortheprototypeexample,theseexpectedpayoffsarecalculatedasfollows:
E[Payoff(drill)]=0.25(700)+0.75(-100)=100.E[Payoff(sell)]=0.25(90)+0.75(90)=90.Since100islargerthan90,thealterativeactionselectedistodrillforoil.ThebigadvantageofBayes'decisionruleisthatitincorporatesalltheavailableinformation,includingallthepayoffsandthebestavailableestimatesoftheprobabilitiesoftherespectivestatesofnature.Itissometimesarguedthattheseestimatesoftheprobabilitiesnecessarilyarelargelysubjectiveandsoaretooshakytobetrusted.Thereisnoaccuratewayofpredictingthefuture,includingafuturestateofnature,eveninprobabilityterms.Thisargumenthassomevalidity.Thereasonablenessoftheestimatesoftheprobabilitiesshouldbeassessedineachindividualsituation.Nevertheless,undermanycircumstances,pastexperienceandcurrentevidenceenableonetodevelopreasonableestimatesoftheprobabilities.Usingthisinformationshouldprovidebettergroundsforasounddecisionthanignoringit.Furthermore,experimentationfrequentlycanbeconductedtoimprovetheseestimates,asdescribedinthenextsection.Therefore,wewillbeusingonlyBayes'decisionrulethroughouttheremainderofthechapter.4.3DECISIONMAKINGWITHEXPERIMENTATIONFrequently,additionaltesting(experimentation)canbedonetoimprovethepreliminaryestimatesoftheprobabilitiesoftherespectivestatesofnatureprovidedbythepriorprobabilities.Theseimprovedestimatesarecalledposteriorprobabilities.WefirstupdatetheGoferbrokeCo.exampletoincorporateexperimentation,thendescribehowtoderivetheposteriorprobabilities,andfinallydiscusshowtodecidewhetherifisworthwhiletoconductexperimentation.4.3.1ContinuingthePrototypeExampleAsmentionedattheendofSec.4.1,anavailableoptionbeforemakingadecisionistoconductadetailedseismicsurveyofthelandtoobtainabetterestimateoftheprobabilityofoil.Thecostis$30,000.Aseismicsurveyobtainsseismicsoundingsthatindicatewhetherthegeologicalstructureisfavorabletothepresenceofoil.Wewilldividethepossiblefindingsofthesurveyintothefollowingtwocategories:USS:Unfavorableseismicsoundings;oilisfairlyunlikely.FSS:Favorableseismicsoundings;oilisfairlylikely.Basedonpastexperience,ifthereisoil,thentheprobabilityofunfavorableseismicsoundingsis
P(USS|State=Oil)=0.4,soP(FSS|State=Oil)=1-0.4=0.6.Similarly,ifthereisnooil,thentheprobabilityofunfavorableseismicsoundingsisestimatedtobe
P(USS|State=Dry)=0.8,soP(FSS|State=Dry)=1-0.8=0.2.Wesoonwillusethesedatatofindtheposteriorprobabilitiesoftherespectivestatesofnaturegiventheseismicsoundings.PriorProbabilitiesConditionalProbabilitiesJointProbabilitiesPosteriorProbabilities
Fig4.6probabilitytreediagramshowingalltheprobabilitiesleadingtothecalculationofeachposteriorprobabilityofthestateofnaturegiventhefindingoftheseismicsurvey4.4DECISIONTREESDecisiontreesprovideausefulwayofvisuallydisplayingtheproblemandthenorganizingthecomputationalworkalreadydescribedintheprecedingtwosections.Thesetreesareespeciallyhelpfulwhenasequenceofdecisionsmustbemade.Decisiontreesmodelsequentialdecisionproblemsunderuncertainty.Adecisiontreedescribesgraphicallythedecisionstobemade,theeventsthatmayoccur,andtheoutcomesassociatedwithcombinationsofdecisionsandevents.Probabilitiesareassignedtotheevents,andvaluesaredeterminedforeachoutcome.Amajorgoaloftheanalysisistodeterminethebestdecisions.Decisiontreeshavethreekindsofnodesandtwokindsofbranches.NodesandBranches
Adecisionnodeisapointwhereachoicemustbemade;itisshownasasquare.Thebranchesextendingfromadecisionnodearedecisionbranches,eachbranchrepresentingoneofthepossiblealternativesorcoursesofactionavailableatthatpoint.Thesetofalternativesmustbemutuallyexclusive(ifoneischosen,theotherscannotbechosen)andcollectivelyexhaustive(allpossiblealternativesmustbeincludedintheset).Aneventnodeisapointwhereuncertaintyisresolved(apointwherethedecisionmakerlearnsabouttheoccurrenceofanevent).Aneventnode,sometimescalleda"chancenode,"isshownasacircle.Theeventsetconsistsoftheeventbranchesextendingfromaneventnode,eachbranchrepresentingoneofthepossibleeventsthatmayoccuratthatpoint.Thesetofeventsmustbemutuallyexclusive(ifoneoccurs,theotherscannotoccur)andcollectivelyexhaustive(allpossibleeventsmustbeincludedintheset).Eacheventisassignedasubjectiveprobability;thesumofprobabilitiesfortheeventsinasetmustequalone.Thethirdkindofnodeisa
terminalnode,representingthefinalresultofacombinationofdecisionsandevents.Terminalnodesaretheendpointsofadecisiontree,shownastheendofabranchonhand-drawndiagramsandasatriangleorverticallineoncomputer-generateddiagrams.Ingeneral,Decisionnodesandbranchesrepresentthecontrollablefactorsinadecisionproblem;Eventnodesandbranchesrepresentuncontrollablefactors.Decisionnodesandeventnodesarearrangedinorderofsubjectivechronology.Forexample,thepositionofaneventnodecorrespondstothetimewhenthedecisionmakerlearnstheoutcomeoftheevent(notnecessarilywhentheeventoccurs).OtherTermsDecisiontreemodelsincludesuchconceptsasnodes,branches,terminalvalues,strategy,payoff
distribution,probabilitydistribution,andtherollbackmethod.Thefollowingproblemillustratesthebasicconcepts.Nodes:(1)DecisionNode(2)EventNode(3)TerminalNodeBranch:(1)DecisionBranch(2)EventBranch(Probability)Profit(Payoff/Outcome)Typeof
NodeWritten
SymbolComputer
SymbolNode
SuccessorDecisionsquaresquaredecisionbranchesEventcirclecircleeventbranchesTerminalendpointtriangleorverticallineterminalvalueSometimes,thenodesofthedecisiontreearereferredtoasforks,andthearcsarecalledbranches.Adecisionfork,representedbyasquare,indicatesthatadecisionneedstobemadeatthatpointintheprocess.Achancefork,representedbyacircle,indicatesthatarandomeventoccursatthatpoint.Theprototypeexampleinvolvesasequenceoftwodecisions:1.Shouldaseismicsurveybeconductedbeforeanactionischosen?2.Whichaction(drillforoilorselltheland)shouldbechosen?Thecorrespondingdecisiontree(beforeaddingnumbersandperformingcomputation)isdisplayedinFig..1ConstructingtheDecisionTree
DoSeismicNoSeismicUnfavorableFavorableDrillSellDrillSellSellDrillOilDryOilOilDryDry4.4.2PerformingtheAnalysis
Havingconstructedthedecisiontree,includingitsnumbers,wenowarereadytoanalyzetheproblembyusingthefollowingprocedure.1,Startattherightsideofthedecisiontreeandmoveleftonecolumnatatime.Foreachcolumn,performeitherstep2orstep3dependinguponwhethertheforksinthatcolumnarechanceforksordecisionforks.2.Foreachchancefork,calculateitsexpectedpayoffbymultiplyingtheexpectedpayoffofeachbranch(showninboldfacetotherightofthebranch)bytheprobabilityofthatbranchandthensummingtheseproducts.Recordthisexpectedpayoffforeachdecisionforkinboldfacenexttothefork,anddesignatethisquantityasalsobeingtheexpectedpayoffforthebranchleadingtothisfork.3.Foreachdecisionfork,comparetheexpectedpayoffsofitsbranchesandchoosethealternativewhosebranchhasthelargestexpectedpayoff.Ineachcase,recordthechoiceonthedecisiontreebyinsertingadoubledashasabarrierthrougheachrejectedbranch.Tobegintheprocedure,considertherightmostcolumnofforks,namely,chanceforksf,g,andh.Applyingstep2,theirexpectedpayoffs(EP)arecalculatedasEP=1/7(670)+6/7(130)=-15.7,forfortf,EP=1/2(670)+1/2(130)=270,forforkg,EP=1/4(700)+3/4(-100)=100,forforkh.
Theseexpectedpayoffsthenareplacedabovetheseforks,asshowninFig.4.11.Next,wemoveonecolumntotheleft,whichconsistsofdecisionforksc,d,ande.Theexpectedpayoffforabranchthatleadstoachanceforknowisrecordedinboldfaceoverthatchancefork.Therefore,step3canbeappliedasfollows.Forkc:DrillalternativehasEP=-15.7.SellalternativehasEP=60.60>-15.7,sochoosetheSellalternative.Forkd:DrillalternativehasEP=270.SellalternativehasEP=60.270>60,sochoosetheDrillalternative.Forke:DrillalternativehasEP=100.SellalternativehasEP=90.100>90,sochoosetheDrillalternative.Theexpectedpayoffforeachchosenalternativenowwouldberecordedinboldfaceoveritsdecisionnode,asalreadyshowninFig.4.11.Thechosenalternativealsoisindicatedbyinsertingadoubledashasabarrierthrougheachrejectedbranch.Next,movingonemorecolumntotheleftbringsustoforkb.Sincethisisachancefork,step2oftheprocedureneedstobeapplied.Theexpectedpayoffforeachofitsbranchesisrecordedoverthefollowingdecisionfork.Therefore,theexpectedpayoffisEP=0.7(60)+0.3(270)123,forforkb,asrecordedoverthisforkinFig.15.11.Finally,wemovelefttoforka,adecisionfork.Applyingstep3yieldsForka:DoseismicsurveyhasEP=123NoseismicsurveyhasEP=100123>100,sochooseDoseismicsurvey.4.5CaseStudy1.DriveTekProblemDriveTekResearchInstitutediscoversthatacomputercompanywantsanewtapedriveforaproposednewcomputersystem.Sincethecomputercompanydoesnothaveresearchpeopleavailabletodevelopthenewdrive,itwillsubcontractthedevelopmenttoanindependentresearchfirm.Thecomputercompanyhasofferedafeeof$250,000forthebestproposalfordevelopingthenewtapedrive.Thecontractwillgotothefirmwiththebesttechnicalplanandthehighestreputationfortechnicalcompetence.DriveTekResearchInstitutewantstoenterthecompetition.Managementestimatesacostof$50,000toprepareaproposalwithafifty-fiftychanceofwinningthecontract.However,DriveTek'sengineersareuncertainabouthowtheywilldevelopthetapedriveiftheyareawardedthecontract.Threealternativeapproachescanbetried.Thefirstapproachisamechanicalmethodwithacostof$120,000,andtheengineersarecertaintheycandevelopasuccessfulmodelwiththisapproach.Asecondapproachinvolveselectroniccomponents.Theengineersestimatethattheelectronicapproachwillcostonly$50,000todevelopamodelofthetapedrive,butwithonlya50percentchanceofsatisfactoryresults.Athirdapproachusesmagneticcomponents;thiscosts$80,000,witha70percentchanceofsuccess.DriveTekResearchcanworkononlyoneapproachatatimeandhastimetotryonlytwoapproaches.Ifittrieseitherthemagneticorelectronicmethodandtheattemptfails,thesecondchoicemustbethemechanicalmethodtoguaranteeasuccessfulmodel.Whatwilltheydo?ThemanagementofDriveTekResearchneedshelpinincorporatingthisinformationintoadecisiontoproceedornot.CASE1:ACompanywantstoupgradeoneoftheirproducts.Therearetwoapproachesfortheactions.Oneofthealternativeactionsisbuyingapatentfromthethirdpartwithan80percentchanceofsatisfactoryresults;theotherapproachisdevelopingtheresearchthemselveswitha60percentchanceofsuccessful
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 龍鳳花鳥字藝術(shù)課程大綱
- DB32T 5090.2-2025 醫(yī)院醫(yī)患溝通規(guī)范 第2部分:門診
- 專利知識(shí)產(chǎn)權(quán)培訓(xùn)
- 醫(yī)院護(hù)理管理培訓(xùn)課件
- 溫有奎大數(shù)據(jù)知識(shí)發(fā)現(xiàn)產(chǎn)品開發(fā)
- 液壓與氣壓傳動(dòng)第九章氣壓傳動(dòng)基礎(chǔ)知識(shí)
- 消防知識(shí)競(jìng)賽資料
- 雨中的安全小班教案
- 強(qiáng)化市場(chǎng)調(diào)研分析預(yù)測(cè)消費(fèi)趨勢(shì)
- 質(zhì)量部檔案管理流程
- 潔凈手術(shù)室規(guī)范
- 企業(yè)供應(yīng)鏈管理與優(yōu)化研究
- 大部分分校:地域文化形考任務(wù)三-國(guó)開(CQ)-國(guó)開期末復(fù)習(xí)資料
- 有機(jī)化學(xué)知到智慧樹章節(jié)測(cè)試課后答案2024年秋山東第一醫(yī)科大學(xué)
- 施工現(xiàn)場(chǎng)安全防火管理制度與規(guī)定范文(2篇)
- 【MOOC】高級(jí)綜合英語-北京交通大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 2024年財(cái)務(wù)會(huì)計(jì)制度模版(4篇)
- 2022年河南省商丘市柘城縣實(shí)驗(yàn)中學(xué)中考一模地理試題(原卷版)
- 辦公用品、易耗品供貨服務(wù)方案
- 《互聯(lián)網(wǎng)金融對(duì)居民消費(fèi)的影響實(shí)證探究》14000字(論文)
- 《篆刻基礎(chǔ)》課件
評(píng)論
0/150
提交評(píng)論