版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
高考函數(shù)熱點分析熱點一:函數(shù)的圖象與性質(zhì)
1.已知解析式判斷函數(shù)圖象BAA必修1課本中的例題.D
對于函數(shù)圖象的識別,我們平時最常用的方法是看:定義域、值域、奇偶性、單調(diào)性、周期性、正負(fù)性、極值點。A2.設(shè)計實際問題考查函數(shù)圖象CA3.已知函數(shù)圖象考查復(fù)合函數(shù)圖象BOxy11-1-1Oxy11-1-1Oxy11-1-1Oxy11-1-1ABCOxy11-1-1(第11題圖)B設(shè)DBCB重組6.考查函數(shù)與導(dǎo)函數(shù)圖象AC7.設(shè)計函數(shù)最值間接考查函數(shù)圖象C8.設(shè)計函數(shù)零點問題間接考查函數(shù)圖象C
此類題型題目多考查零點的存在定理,[a,b]上的連續(xù)函數(shù)f(x)在(a,b)內(nèi)有零點的充分不必要條件是f(a)f(b)<0,若f(x)為連續(xù)單調(diào)函數(shù),則為充要條件,所以,此類題目只需判斷端點函數(shù)值是否異號即可,通常難度不大.對于f(x)的圖像容易作出的情況,數(shù)形結(jié)合也不失為一種好的方法.
注:本題考查函數(shù)零點的判斷方法及運算能力。
分段函數(shù),即函數(shù)在定義域的不同子集合內(nèi),采用不同的對應(yīng)法則,此概念對應(yīng)題目多為簡單或中檔題.解決此類題目只要判斷清楚待求自變量究竟在定義域的哪一個子集就好了,如果不確定,則需進(jìn)行討論.至于分段函數(shù)與單調(diào)性、最值等問題的綜合,只需在每一“段”內(nèi)分別考察單調(diào)性、最值,然后綜合考慮即可.
例如近年來各省市的高考解答題中的熱點函數(shù):
不等式的演變(1)不等式的演變(2)
(1)恒成立求參數(shù)取值范圍問題在這幾年高考試題中備受青睞,尤其是全國2卷,每年的壓軸題基本上都是這一類問題,例如,
不等式是高中數(shù)學(xué)的重要內(nèi)容,它幾乎涉及整個高中數(shù)學(xué)的各個部分,因此通過不等式這條紐帶可以把中學(xué)數(shù)學(xué)的各個部分內(nèi)容有機(jī)地聯(lián)系起來,而不等式的證明是高中數(shù)學(xué)的一個難點,加之題型廣泛,方法靈活,涉及面廣,許多同學(xué)望而生畏,正因如此,歷年高考命題者把不等式的證明問題作為高考壓軸題。其實高考中證明不等式時十有八九都需要構(gòu)造函數(shù)
.
函數(shù)與方程數(shù)學(xué)思想方法是新課標(biāo)要求的一種重要的數(shù)學(xué)思想方法,構(gòu)造函數(shù)法便是其中的一種。構(gòu)造數(shù)列,利用逐項比較法證明數(shù)列不等式
本題運用的原理是只要數(shù)列an的通項比數(shù)列bn的通項大,則數(shù)列an
的前項Sn和就比數(shù)列bn的前項和Tn大。在最近幾年的高考題中也常常出現(xiàn)這種題型,例如2010年湖北高考理科21題,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年太陽能電池及組件項目規(guī)劃申請報告模范
- 2025年旅游景區(qū)管理服務(wù)項目申請報告模范
- 2024-2025學(xué)年銅山縣數(shù)學(xué)三上期末質(zhì)量檢測試題含解析
- 2025年氯金酸項目申請報告模范
- 財務(wù)類實習(xí)報告模板合集5篇
- 2025年汽車隔音材料項目申請報告模板
- 畢業(yè)財務(wù)實習(xí)報告4篇
- 餐廳服務(wù)員的辭職報告15篇
- 我與青少年科技活動600字獲獎?wù)魑?0篇范文
- 個人寒假實習(xí)報告
- 成人經(jīng)鼻高流量濕化氧療臨床規(guī)范應(yīng)用專家共識解讀
- 2024信息技術(shù)應(yīng)用創(chuàng)新信息系統(tǒng)適配改造成本度量
- 廣東省廣州市2025屆高三上學(xué)期12月調(diào)研測試(零模)英語 含解析
- 陜西測繪地理信息局所屬事業(yè)單位2025年上半年招聘87人和重點基礎(chǔ)提升(共500題)附帶答案詳解
- 保險學(xué)期末試題及答案
- 高一數(shù)學(xué)上學(xué)期期末模擬試卷01-【中職專用】2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期(高教版2023基礎(chǔ)模塊)(解析版)
- 《外傷性顱內(nèi)積氣》課件
- 2024-2025學(xué)年人教版八年級上冊地理期末測試卷(一)(含答案)
- 統(tǒng)編版(2024新版)七年級上冊道德與法治第四單元綜合測試卷(含答案)
- 滬教版英語小學(xué)六年級上學(xué)期期末試題與參考答案(2024-2025學(xué)年)
- 北京市海淀區(qū)2023-2024學(xué)年四年級上學(xué)期語文期末試卷
評論
0/150
提交評論