![參考應(yīng)用技術(shù)學(xué)院電子教案_第1頁](http://file4.renrendoc.com/view/10cb22e7c4328313ce41fbb9e62d1429/10cb22e7c4328313ce41fbb9e62d14291.gif)
![參考應(yīng)用技術(shù)學(xué)院電子教案_第2頁](http://file4.renrendoc.com/view/10cb22e7c4328313ce41fbb9e62d1429/10cb22e7c4328313ce41fbb9e62d14292.gif)
![參考應(yīng)用技術(shù)學(xué)院電子教案_第3頁](http://file4.renrendoc.com/view/10cb22e7c4328313ce41fbb9e62d1429/10cb22e7c4328313ce41fbb9e62d14293.gif)
![參考應(yīng)用技術(shù)學(xué)院電子教案_第4頁](http://file4.renrendoc.com/view/10cb22e7c4328313ce41fbb9e62d1429/10cb22e7c4328313ce41fbb9e62d14294.gif)
![參考應(yīng)用技術(shù)學(xué)院電子教案_第5頁](http://file4.renrendoc.com/view/10cb22e7c4328313ce41fbb9e62d1429/10cb22e7c4328313ce41fbb9e62d14295.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
亥姆霍茲函數(shù)及吉熱力學(xué)一 亥姆霍dSQW≥dU-T環(huán)T1=T2=T環(huán)=
Hermannvon(1821年-1894年 也稱為:亥姆霍茲自由能 A的SI單位A吉布斯T1=T2=T環(huán)=p1=p2=p環(huán)=或W’≥d(H-TS) H吉布斯函數(shù)(Gibbsfunction)G
JosiahWillard(1839年-1903年G的SI單位
熵判據(jù)“對 系統(tǒng)或絕熱“
=表示可逆,平衡亥姆霍茲函數(shù) “=”表示可逆,平“<”表示不可吉布斯函數(shù)
“=”表示可“<”表示不可 蒸發(fā)焓為40.69kJmol-1。-1K=-(1ol)(40.69kJol-
-1)/(373.2K)=-109.0JK-109.0JK =-(1ol)(8.314Jol-1K-1K=19.JK0J 例3.5.3C6H6的正常為5℃,摩爾熔化焓9916Jmol-1,=126.8JK1mol=122.6JK1mol
C6H6(s),101325Pa,C6H6(s),101325Pa,C6H6(l),101325Pa,
Q=={1×[126.8×(278.2-268.2)+(-9916)+122.6×(268.2-=-△U=Q+W≈Q=-△S1=nCp,m(l)ln(T2/T1=4.642JK△S2=35.643JK△S3=nCp,m(s)ln(T1/T24.488JKJK△A=△U-T△S=[-9874-268.2×(-35.50)]J=-△G=△H-T△S=[-9874-268.2×(-35.50)]J=-熱力學(xué)第三thethirdlawof熱力學(xué)能斯特?zé)岫ɡ?Nernstheat lim(GH)T1906年,Nernst經(jīng)過系統(tǒng)地研了溫lim(G lim(S T
T limST0K
(凝聚系統(tǒng)或△S 熱力學(xué)第三定律的普朗克0K時純物質(zhì)凝聚相的熵為limS(B凝聚相)T0或3純物質(zhì)完美晶體的熵,0K時為零規(guī)定摩爾熵(conventionalmolar,也稱為絕對摩爾熵(absoluteentropyS(B,T)
標準摩爾熵(standardmolareSe(B,T)
Cp,md 0 以Cp/T為縱如圖所S (Cp/T10K以下,用德拜(Debye)TCp,m=Cm=aT Cp固 ST
dT C(液+b
TCp(氣 從Cp,m數(shù)據(jù)求HCl(g)
S JKlmmSmSm0=∑B反應(yīng)的標準摩爾熵[變(standardmolarentroiesomS 8TmS
Z,TaS
A,TbS
B,Tmmm B 8Tmmm B
8B,T .1熱力學(xué) 熱傳導(dǎo)過程的不可逆氣體混合過程的這是度增加的過程,也是熵增加的過程,熱力學(xué)第二定律,凡是自發(fā)的過程都是 熵的統(tǒng)計比。例如:有4個小球分裝在兩個盒子中,總的分
4(4,0)C44444(2,2)C24
C144
(0,4)C04其中,均勻分布的熱力學(xué)概率?(2,2)最大,為6。4 0VN的函數(shù),兩者之間必定有某SS(Boltzmann認為這個函數(shù)應(yīng)該有如下的對數(shù)形Skln這就是 k=R/L=1.381×10-23JK 把熱力學(xué)宏觀量S玻耳茲 上的關(guān)系S=klog(后來普朗克將其改寫為S=kBlog 熵與信只計字數(shù)內(nèi)容,單在Shannon從概
ClaudeShannon(1916–2001)找人找到的概率是1/50知道住在三層,找到的概率1/10知道房間號碼,則概率加大到1 一,讓乙猜它的花色,規(guī)則是允許乙提問題, S=-香農(nóng)把這叫做信息熵,它意味著信息量 S
ln
lni 率Pi的平均。如果所有的Pi=1/N,則上式歸結(jié)為S=-熵S=0.469,從而這句話含信息量I=1—S=0.531bit加。在一個過程中△I=—△S,即信息量相當(dāng)于負熵從信息熵 1bit=kln2=0.957×10-23JK- 增加一個bit,它的熵減少kln2,這只能對于自然界一切自發(fā)有序(order)的減無序(disorder)信息(information)熵(entropy)吉布斯佯(又稱吉布斯悖論,Gibbs..麥克斯韋(Maxwell's熱力學(xué)(fundamentalequationofU、H、S、A、G、p、V、TH=U+pVA=U-TSG=H-
U=U(S、H=H(S、A=A(T、G=G(T、(Gibbs-HelmholtzT=(U/S)V=(H/S)p-(U/V)S=-(A/V)T=(H/p)S=(G/p)T(G/p)T=V吉布斯—亥姆霍(Gibbs-HelmholtzGT 1G GSGTS TT T
T T GT p TpAT p Tp麥克斯韋關(guān)系式(Maxwell's
例3.8.1文石和方解石是兩種不同晶型的CaCO3。25℃、100kPa下1mol文石轉(zhuǎn)變?yōu)榉浇馐瘯r,體積增
p1V(文石)dpV(文石)( p2 2p2G3 V(方解石)dpV(方解石22
p1∴△V(p2-p1)=795J例 (UV)T 因為所以對于理想氣體,有p=nRT/V (U/V)T=(TnR/V)-p=0p=[nRT/(V-nb(U/V)T=[TnR/(V-nb)]-p=n2a/V2 H2O(l),101325Pa,-H2O(l),489.2Pa,-H2O(g),489.2Pa,-
H2O(S),101325Pa,-HH2O(S),475.4Pa,-H2O(g),475.4Pa,-△G2△G4△G1+△G5△G3=Vdp≈nRT/pdp==[1×8.314×270.2×ln(475.4=-4=-克拉佩龍Gm()≤Gm() ,T,p)= T→T+dT,p→ )=dGm(
(1799-1864)dGm()=dGm(dGm()dGm()=-Sm()dT+Vm(-Sm()dT+Vm()dp=-Sm()dT+Vm( Sm()
Vm() T
克拉佩龍方程(Clapeyron克勞修△Vm≈Vm(g)≈△vapHm=dp/dT=△vapHm/TVm(氣dln{p}vap RTlnp
vapH
1p1
T2
T1ln{p}vapH 克勞修斯-克拉佩(Clausius-Clapeyron3.9.3Trouton規(guī)則和Antoine楚頓規(guī)則(Trouton’srule)。vap
85JK-13.9.4外壓與蒸氣壓的p g
Vm(1)(pp*pg pg**g g
壓。
pep
時,則 p* 0℃時冰的融化焓為6008Jmol-1,冰的19.652c3ol18.018c3ol1℃所需的壓力變dpfusH 6008Jmol-(273.15K)(18.01819.652)10-6m3mol- 1.346107PaK-47.6kPa下苯的沸kJol 47.6kPa31800Jmol- 8.314 K- mol-1 353.2K SecondLawofThesecondlawofthermodynamicsisanexpressionoftheuniversallawofincreasingentropy,statingthattheentropyofanisolatedsystemwhichisnotinequilibr time,approachinga umvalueatequilibrium.ThesecondlawtracesitsorigintoFrenchphysicistSadiCarnot's1824paperReflectionsontheMotivePowerofFire,whichpresentedtheviewthatmotivepower(work)isduetothefallofcaloric(heat)fromahottocoldbody(workingsubstance).Insimpleterms,thesecondlawisanexpressionofthefactthatovertime,ignoringtheeffectsofself-gravity,differencesintemperature,pres ,anddensitytendtoevenoutinaphysicalsystemthatisisolatedfromtheoutsideworld.Entropyisameasureofhowfaralongthisevening-outprocesshasprogressed.Therearemanyversionsofthesecondlaw,buttheyallhavethesameeffect,whichistoexinthephenomenonofirreversibilityinTherearemanywaysofstatingthesecondlawofthermodynamics,butallareequivalentinthesensethateachformofthesecondlawlogicallyimplieseveryotherform.Thus,thetheoremsofthermodynamicscanbeprovedusinganyformofthesecondlawandthirdThe
s dlawthatrefersto Inasstema rocessthatoccurswilltendtoincreasethetotalentropyoftheuniverse.Thus,whileasystemcanundergosomephysicalprocessthatdecreasesitsownentropy,theentropyoftheuniverse(whichincludesthesystemanditssurroundings)mustincreaseoverall.(Anexceptiontothisruleisareversibleor"isentropic"process,suchasfrictionlessadiabaticcompression.)Processesthatdecreasetotalentropyoftheuniverseareimpossible.Ifasystemisatequilibrium,bydefinit processesoccur,andthereforethesystemisat umentropy.AlsoduetoRudolfClausiusisthesimlestformulationofthesecondlaw,theheatformulationorClausiusstatement:HeatgenerallycannotspontaneouslyflowfrommaterialatlowertemperaturetoamaterialathigherInformally,"Heatdoesn'tflowfromcoldtohot(withoutinput)",whichisobviouslytruefromeverydayexperience.Forexampleinarefrigerator,heatflowsfromcoldtohot,butonlywhenaidedbyanexternalagent(i.e.thecompressor).Notethatfromthemathe ade heatflowsfromcoldtohothasdecreasingentropy.Thiscanhappeninanon-isolatedsystemifentropyiscreatedelsewhere,suchthatthetotalentropyisconstantorincreasing,asrequiredbythesecondlaw.Forexample,theelectricalenergygoingintoarefrigeratorisconvertedtoheatandgoesouttheback,representinganetincreaseinentropy.Theexceptiontothisisinstatisticallyunlikelyeventswhereparticles
theenergyofcoldparticlesenoughthatthesidegetscolderandthehotsidegetshotter,foraninstant.Sucheventshavebeenobservedatasmallenoughscalewherethelikelihoodofsuchathinghappeningislargeenough.ThemathematicsinvolvedinsuchaneventaredescribedbyfluctuationAthirdformulationofthesecondlaw,byLordKelvin,istheheatengineformulation,orKelvinstatement:Itisimpossibletoconvertheatcomple yintoworkinacyclicprocess.Thatis,itisimpossibletoextractenergybyheatfromahigh-temperatureenergysourceandthenconvertalloftheenergyintowork.Atleastsomeoftheenergymustbepassedontoheatalow- rgys .T ,a atengine h100%e isthermodynamicallyimpossible.Thermodynamicsisatheoryofmacroscopicsystemsandthereforethesecondlawappliesonlytomacroscopicsystemswithwell-definedtemperatures.Forexample,inasystemoftwomolecules,thereisanon-trivialprobabilitythattheslower-moving("cold")moleculetransfersenergytothefaster-moving("hot")molecule.Suchtinysystemsareoutsidethe ofclassicalthermodynamic, heycanbeinvestigatedinquantumthermodynamicsbyusingstatisticalmechanics.Foranyisolatedsstemwithamassofmorethana ico robabilitiesobservingadecreaseinentropyapproachEnergyThesecondlawofthermodynamicsisanaxiomof eat,entropy,andthedirectionnwhichthermodynamicprocessescanoccur.Forexample,thesecondlawimpliesthatheatdoesnotspontaneouslyflowfromacoldmaterialtoahotmaterial,butitallowsheattoflowfromahotmaterialtoacoldmaterial.Roughlyspeaking,thesecondlawsaysthatinanisolatedsystem,concentratedenergydispersesovertime,andconsequentlylessconcentratedenergyisavailabletodousefulwork.Energydispersalalsomeansthatdifferencesintemperature,pressure,anddensityevenout.Againroughlyspeaking,thermodynamicentropyisameasureofenergydispersal,andsothesecondlawiscloselyconnectedwiththeconceptofentropy.HistoryofThefirsttheoryontheconversionofheatintomechanicalworkisduetoNicolasLéonardSadiCarnotin1824.Hewasthefirsttorealizecorrectlythattheefficiencyofthisconversiondependsonthedifferenceoftemperaturebetweenanengineanditsenvironment.RecognizingthesignificanceofJamesPrescottJoule'sworkontheconservationofenergy,RudolfClausiuswasthefirsttoformulatethesecondlawin1850,inthisform:heatdoesnotspontaneouslyflowfromcoldtohotbodies.Whilecommonknowledgenow,thiswas tothecalorictheor ofheat oularatthetime,whichconsideredheatasaliquid.FromtherehewasabletoinferthelawofSadiCarnotandthedefinitionofentropy(1865).Establishedinthe19thcentury,theKelvin- nckstatementoftheSecondLawsays,"Itisimpossibleforanydevicethatoperatesonacycletoreceiveheatfromasinglereservoirandprod ofwork."ThiswasshowntobeequivalenttothestatementofTheErgodichypothesisisalsoimportant approach.Itsaysthat,overlongperiodsoftime,thetimespentinsomeregionofthephasespaceofmicrostateswiththesameenergyisproportionaltothevolumeofthisregion,i.e.thatallaccessiblemicrostatesareequallyprobableoverlongperiodoftime.Equivalently,itsaysthattimeaverageandaverageoverstatisticalensemblearetheUsingquantummechanicsithasbeenshownthatthelocalannentropyisatits umvaluewithanextremelyhighprobability,thusprovingthesecondlaw.[5]Theresultisvalidforalargeclassofisolatedquantumsystems(e.g.agasinacontainer).Whilethefullsystemispureandhasthereforenoentropy,theentanglementbetweengasandcontainergivesrisetoanincreaseofthelocalentropyofthegas.Thisresultisoneofthemostimportantachievementsofquantumthermodynamics.InformalThesecondlawcanbestatedinvarioussuccinctways,Itisimpossibletoproduceworkinthesurroundingsusingacyclicprocessconnectedtoasingleheatreservoir(Kelvin,1851).Itisimpossibletocarryoutacyclicprocessusinganengineconnectedtotwoheatreservoirsthatwillhaveasitsonlyeffectthetransferofa tyofheatfromthelow-temperaturereservoirtothehigh-temperaturereservoir(Clausius,1854).IfthermodynamicworkistobedoneatafiniteenergymustbeThirdLawofThethirdlawofthermodynamicsisastatisticallawofnatureregardingentropyandtheimpossib ofre hinga oftemperature.Themostcommonenunciationofthirdlawofthermodynamicsis:“Asasystemapproachesabsolutezero,allprocessesceaseandtheentropyofthesystemapproachesaminimumvalue.”Notethattheminimumvalueisnotnecessarilyzero,althoughitisalmostalwayszeroinaperfect,purecrystal;seethearticleResidualentropyformoreinformation.Theessenceofthepostulateisthatthesystemnearabsolutezerodependsonlyonthetemperature(i.e.tendstoaconstantindeendentl oftheother arameters.'ThethirdlawwasdevelopedbyWaltherNernst,duringtheyears1906-1912,andisthussometimesreferredtoasNernst'stheoremorNernstspostulate.Thethirdlawofthermodynamicsstatesthattheentropyofasystematzeroisawell-definedconstant.Thisisbecauseasstematzerotemeratureexistsinits roundstatesothatitsentropyisdeterminedonlybythedegeneracyofthegroundstate;or,itstatesthat"itisimpossiblebyanyprocedure,nomatterhowidealised,toreduceanysystemtotheabsolutezerooftemperatureinafinitenumberofoperations".'AnalternativeversionofthethirdlawofthermodynamicsasstatedbyGilbertN.LewisandMerleRandallin1923:“Iftheentropyofeachelementinsome(perfect)crystallinestatebetakenaszeroattheabsolutezerooftemperature,everysubstancehasafinitepositiveentropy;butattheabsolutezerooftemperaturetheentropymay ezero,anddoesso einthecaseo erectcrstallinesubstances.”ThisversionstatesnotonlyΔSwillreachzeroat0Kelvin,butSitselfwillalsoreachzero,atleastforperfectcrystallinesubstances.(Thisstatementisnowknowntohavesomerareexceptions.)Insimpleterms,theThirdLawstatesthattheentropyofmostpuresubstancesapproacheszeroastheabsolutetemperatureapproacheszero.Thislawprovidesan thedeterminationofentropy.Theentropydeterminedrelativetothispointistheabsoluteentropy.Aspecialcaseofthisissystemswithauniquegroundstate,suchasmostcrystallattices.TheentropyofaperfectcrystallatticeasdefinedbyNernst'stheoremiszero(ifit
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國MRI行業(yè)市場深度分析及投資潛力預(yù)測報告
- 醫(yī)院自聯(lián)申請書
- 羊毛氈帽胚行業(yè)市場發(fā)展及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 環(huán)保理念下的企業(yè)辦公用品采購策略研究
- 內(nèi)蒙古馬頭琴非物質(zhì)文化遺產(chǎn)法律保護研究
- 直通式節(jié)流閥沖蝕分析及結(jié)構(gòu)優(yōu)化研究
- 2025年鍛件鑄鋼項目可行性研究報告
- 植物非特異性磷脂酶C4水解磷脂的功能和機制研究
- 知識產(chǎn)權(quán)教育與培訓(xùn)體系
- 物理學(xué)原理在智能穿戴設(shè)備中的應(yīng)用
- JT-T-1180.2-2018交通運輸企業(yè)安全生產(chǎn)標準化建設(shè)基本規(guī)范第2部分:道路旅客運輸企業(yè)
- QCT848-2023拉臂式自裝卸裝置
- 2024交管12123駕照學(xué)法減分必考題庫附答案
- 腦脊液常規(guī)檢查
- 2024年蘇州經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫附答案
- 柴油機油-標準
- 監(jiān)獄安全課件
- 《初三開學(xué)第一課 中考動員會 中考沖刺班會》課件
- 護理干預(yù)在慢性病管理中的作用
- 四肢癱瘓的護理查房
- 慢性萎縮性胃炎的護理查房
評論
0/150
提交評論