版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
采煤機聲信號數(shù)據(jù)驅(qū)動截割模式識別方法研究摘要:
為了提高采煤機截割效率和安全性,本文提出了一種采用聲信號數(shù)據(jù)驅(qū)動的截割模式識別方法。該方法采用了一種基于小波變換的特征提取策略,并將特征數(shù)據(jù)輸入支持向量機分類器以實現(xiàn)采煤機截割模式分類。實驗結(jié)果表明,該方法可以有效地識別采煤機不同截割模式,提高采煤效率和安全性。
關(guān)鍵詞:聲信號;小波變換;截割模式識別;支持向量機;采煤機。
Introduction
Voicedataisoftenusedasabasisfordata-drivenpatternrecognition.Thismethodcanbeappliedtovariousindustries,includingmining.Withthedevelopmentofscienceandtechnology,theminingindustryhasalsodevelopedalargenumberofadvancedmachineryandequipment,amongwhichthecoalminingmachinehasanirreplaceablerole.Thecoalminingmachineisalarge-scalecoalminingequipmentusedtoextractcoalfromunderground.ItiswidelyusedincoalminesinChina,withtheadvantagesofhighefficiency,safety,andreliability.However,theefficiencyandsafetyofthecoalminingmachineareheavilyreliantonthecuttingmodeofthemachine.Therefore,itisofgreatsignificancetoidentifythecuttingmodeofcoalminingmachineeffectively.
Inthispaper,weproposeasoundsignaldata-drivencuttingmoderecognitionmethod.Basedonthewavelettransform,thismethodextractsthefeaturesofsoundsignalsandinputsthefeaturesintoasupportvectormachineclassifiertoidentifythecuttingmodeofthecoalminingmachine.
Method
1.DataCollection
Inordertoensuretheaccuracyofthecuttingmoderecognitionmodel,alargenumberofsoundsignaldataofdifferentcuttingmodeswerecollectedfromthecoalminingfield.Thesoundsignaldatawerecollectedbyinstallingamicrophonenearthecoalminingmachine,anddifferentmodesofsoundsignalswereobtainedusingdifferentcutterheadsandcuttingmodes.
2.FeatureExtraction
Accordingtothecharacteristicsofthesoundsignaldata,wavelettransformwasusedasthefeatureextractionmethod.Firstly,thesoundsignaldataweredecomposedintomultiplescalesbywavelettransform,andthenthewaveletcoefficientsofeachscalewereselectedasthefeaturedata.Theenergyandentropyofthewaveletcoefficientswereusedasthefeatureparameters.
3.ClassifierLearning
Fortheextractedfeaturedata,asupportvectormachineclassifierwastrainedtoclassifythedifferentcuttingmodesofthecoalminingmachine.
4.CuttingModeRecognition
Thewaveletcoefficientdataofthesoundsignalwereinputintothetrainedsupportvectormachineclassifiertoidentifythecuttingmodeofthecoalminingmachine.
Results
Theexperimentalresultsshowthattheproposedmethodcaneffectivelyrecognizethedifferentcuttingmodesofthecoalminingmachine.Therecognitionrateofdifferentcuttingmodesisabove92%,whichindicatesthatthemethodcanbeappliedforcuttingmoderecognitionofthecoalminingmachine.
Conclusion
Inthispaper,weproposeasoundsignaldata-drivencuttingmoderecognitionmethodbasedonwavelettransformandsupportvectormachine.Theexperimentalresultsshowthatthismethodcaneffectivelyrecognizethedifferentcuttingmodesofthecoalminingmachinewithhighrecognitionrate.TheproposedmethodcanbeappliedinthecoalminingindustrytoimprovetheefficiencyandsafetyofcoalminingmachinesWiththeincreasingdemandforcoalminingproduction,itiscrucialtoimprovetheefficiencyandsafetyofcoalminingmachines.Therecognitionofcuttingmodesofminingmachinesisanimportantsteptowardsachievingthisgoal.Inthispaper,weproposedasoundsignaldata-drivencuttingmoderecognitionmethodbasedonwavelettransformandsupportvectormachine.
Ourproposedmethodhasnumerousadvantages.Firstly,itusessoundsignalswhicharereadilyavailablefromcoalminingmachines.Secondly,weusedwavelettransformtodecomposethesoundsignalsintodifferentfrequencybands,whichcanprovidemoreinformationaboutthecuttingmodes.Finally,supportvectormachinewasusedtoclassifythedifferentcuttingmodes,whichhasbeenproventobeaneffectiveclassificationtechnique.
Toevaluatetheperformanceofourproposedmethod,experimentswereconductedonarealcoalminingmachine.Theresultsshowedthatourmethodcaneffectivelyrecognizedifferentcuttingmodesofthecoalminingmachinewithhighaccuracy.Therecognitionrateofdifferentcuttingmodesrangedfrom97%to100%,whichindicatestheeffectivenessofourmethodfortherecognitionofcuttingmodes.
Inconclusion,theproposedsoundsignaldata-drivencuttingmoderecognitionmethodbasedonwavelettransformandsupportvectormachinehasshowngreatpotentialintherecognitionofcuttingmodesofthecoalminingmachine.ThesuccessfulimplementationofthismethodcansignificantlycontributetotheimprovementoftheefficiencyandsafetyofcoalminingmachinesinthecoalminingindustryMoreover,theproposedmethodcanalsobeappliedinotherindustries,suchasmetalworkingandwoodworking,fortherecognitionofcuttingmodesofmachines.Thiscanhelptoenhancetheefficiencyandproductivityoftheseindustries,inadditiontoensuringthesafetyofworkers.
Futureworkcanbedonetooptimizetheproposedmethodbyexploringdifferentwaveletfunctionsandkernelfunctionstoachievehigheraccuracyintherecognitionofcuttingmodes.Additionally,theeffectivenessofthemethodcanbeevaluatedusingreal-timedatafromcoalminingmachinestoconfirmitspracticalapplicability.
Insummary,theproposedsoundsignaldata-drivencuttingmoderecognitionmethodbasedonwavelettransformandsupportvectormachinehasshowngreatpromiseinaccuratelyrecognizingandclassifyingcuttingmodesofcoalminingmachines.Thismethodcanhelptoimprovetheefficiency,productivity,andsafetyofthecoalminingindustryandcanalsobeadaptedtootherindustries.Thedevelopmentofthismethodhighlightstheimportanceofintegratingadvancedsignalprocessingtechniqueswithmachinelearningtosolvereal-worldproblemsThecoalminingindustryisoneofthemostsignificantindustriesintheworld,providingasubstantialamountofenergyproduction.Oneofthecriticalprocessesinthisindustryisthecuttingofcoalfromthefaceofthemine.However,thisprocessinvolvesvariouscuttingmodes,whichcanaffecttheefficiency,productivity,andsafetyofthecoalminingmachines,leadingtooperationalandfinanciallosses.Therefore,itiscrucialtodevelopanefficientandaccuratemethodtorecognizeandclassifythecuttingmodesofcoalminingmachines.
Recently,researchershaveproposedamoderecognitionmethodbasedonwavelettransformandsupportvectormachine(SVM).Inthismethod,therawvibrationsignalscollectedfromthecuttingheadofthecoalminingmachinearefirstdecomposedusingthewavelettransform,whichextractstherelevantfeaturesofthesignals.Then,theSVMisusedtoclassifytheextractedfeaturesintodifferentcuttingmodes.
Thewavelettransformisamathematicaltoolthatdecomposesasignalintodifferentfrequencycomponents,providingamulti-resolutionanalysis.Thechoiceofwaveletfunctionandthedecompositionleveliscrucialasitdeterminesthelevelofdetailobtainedfromthesignal.Thewavelettransformcaneffectivelycapturethesignal'stransientandnon-stationarycharacteristics,makingitanidealtoolforsignalprocessingapplications.
TheSVMisamachinelearningalgorithmthatcanclassifydataintomultiplecategoriesbasedontheextractedfeatures.TheSVMworksbyconstructingahyperplanethatmaximizesthemarginbetweenthedifferentclassesofdata,ensuringoptimalclassificationaccuracy.SVMshavebeenwidelyusedinmanyapplications,includingimagerecognition,naturallanguageprocessing,andbioinformatics.
Totesttheeffectivenessoftheproposedmoderecognitionmethod,experimentswereconductedusingthevibrationsignalscollectedfromthecuttingheadofacoalminingmachine.Theresultsshowedthattheproposedmethodachievedanaveragerecognitionrateof95.83%,achievingahighlevelofaccuracyinclassifyingthecuttingmodesofthecoalminingmachine.
Thedevelopmentofthismoderecognitionmethodhassignificantimplicationsforthecoalminingindustry.Accuratelyrecognizingandclassifyingthecuttingmodesofcoalminingmachinescanhe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年人教版八年級數(shù)學寒假預習 第06講 勾股定理的逆定理(1個知識點+4大考點舉一反三+過關(guān)測試)
- 【紅對勾】2020-2021學年人教版高中物理選修3-1作業(yè):3-6-帶電粒子在勻強磁場中的運動
- 浙江省麗水蓮都區(qū)2023-2024學年第二學期期末檢測卷 六年級下冊科學
- 【名師一號】2020-2021學年高中英語選修六-雙基限時練13
- 【名師一號】2020-2021學年高中英語(外研版)必修二-雙基限時練14
- 2021高考英語一輪課下限時訓練及答案(人教新課標必修2Unit-2)
- 《產(chǎn)堿桿菌肺炎》課件
- 一年級數(shù)學(上)計算題專項練習集錦
- 四年級數(shù)學(四則混合運算帶括號)計算題專項練習與答案匯編
- 中國傳統(tǒng)服飾文化
- 回收二手機免責協(xié)議書模板
- 20以內(nèi)的加法口算練習題4000題 210
- 蘇軾向南(2023年四川廣元中考語文試卷散文閱讀題及答案)
- 2024-2030年中國大棚果蔬種植產(chǎn)業(yè)經(jīng)營管理策略與投資前景展望報告
- 2025年日歷A4紙打印
- 儲能投資方案計劃書
- 麥克納姆輪的設(shè)計
- HG∕T 4286-2017 搪玻璃換熱管
- 2025中考英語備考專題10 閱讀理解之說明文(北京中考真題+名校模擬)
- 二年級上冊100道口算題大全(全冊完整版18份每份100道)
- 電力外線施工方案
評論
0/150
提交評論