版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,角所對(duì)的邊分邊為,已知,則此三角形的解的情況是()A.有一解 B.有兩解 C.無(wú)解 D.有解但解的個(gè)數(shù)不確定2.如圖,飛機(jī)的航線和山頂在同一個(gè)鉛垂面內(nèi),若飛機(jī)的高度為海拔18km,速度為1000m/h,飛行員先看到山頂?shù)母┙菫?,?jīng)過(guò)1min后又看到山頂?shù)母┙菫?,則山頂?shù)暮0胃叨葹椋ň_到0.1km,參考數(shù)據(jù):)A.11.4km B.6.6km C.6.5km D.5.6km3.若數(shù)列滿足(,為常數(shù)),則稱數(shù)列為“調(diào)和數(shù)列”.已知數(shù)列為調(diào)和數(shù)列,且,則的最大值是()A.50 B.100 C.150 D.2004.“”是“函數(shù)的圖像關(guān)于直線對(duì)稱”的()條件A.充分非必要 B.必要非充分 C.充要 D.既不充分又非必要5.已知向量,,若,則()A. B. C. D.6.若,且,則“”是“函數(shù)有零點(diǎn)”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.若角α的終邊過(guò)點(diǎn)P(-3,-4),則cos(π-2α)的值為()A. B. C. D.8.已知扇形的面積為2cm2,扇形圓心角θ的弧度數(shù)是4,則扇形的周長(zhǎng)為()A.2cm B.4cm C.6cm D.8cm9.設(shè)數(shù)列是等差數(shù)列,是其前項(xiàng)和,且,,則下列結(jié)論中錯(cuò)誤的是()A. B. C. D.與均為的最大值10.設(shè)在中,角所對(duì)的邊分別為,若,則的形狀為()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不確定二、填空題:本大題共6小題,每小題5分,共30分。11.將角度化為弧度:________.12.已知為的三個(gè)內(nèi)角A,B,C的對(duì)邊,向量,.若,且,則B=13.與終邊相同的最小正角是______.14.若三邊長(zhǎng)分別為3,5,的三角形是銳角三角形,則的取值范圍為______.15.已知數(shù)列{}滿足,若數(shù)列{}單調(diào)遞增,數(shù)列{}單調(diào)遞減,數(shù)列{}的通項(xiàng)公式為____.16.英國(guó)物理學(xué)家和數(shù)學(xué)家艾薩克·牛頓(Isaacnewton,1643-1727年)曾提出了物體在常溫環(huán)境下溫度變化的冷卻模型.現(xiàn)把一杯溫水放在空氣中冷卻,假設(shè)這杯水從開始冷卻,x分鐘后物體的溫度滿足:(其中…為自然對(duì)數(shù)的底數(shù)).則從開始冷卻,經(jīng)過(guò)5分鐘時(shí)間這杯水的溫度是________(單位:℃).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,四面體中,分別是的中點(diǎn),,.(1)求證:平面;(2)求三棱錐的體積.18.如圖幾何體中,底面為正方形,平面,,且.(1)求證:平面;(2)求與平面所成角的大小.19.已知數(shù)列{an}中,a1=1且an﹣an﹣1=3×()n﹣2(n≥2,n∈N*).(1)求數(shù)列{an}的通項(xiàng)公式:(2)若對(duì)任意的n∈N*,不等式1≤man≤5恒成立,求實(shí)數(shù)m的取值范圍.20.設(shè).(1)用表示的最大值;(2)當(dāng)時(shí),求的值.21.如圖,四面體中,,,為的中點(diǎn).(1)證明:;(2)已知是邊長(zhǎng)為2正三角形.(Ⅰ)若為棱的中點(diǎn),求的大小;(Ⅱ)若為線段上的點(diǎn),且,求四面體的體積的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】由三角形正弦定理可知無(wú)解,所以三角形無(wú)解,選C.2、C【解析】
根據(jù)題意求得和的長(zhǎng),然后利用正弦定理求得BC,最后利用求得問(wèn)題答案.【詳解】在中,根據(jù)正弦定理,所以:山頂?shù)暮0胃叨葹?8-11.5=6.5km.故選:C【點(diǎn)睛】本題考查了正弦定理在實(shí)際問(wèn)題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)應(yīng)用,轉(zhuǎn)化與劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.3、B【解析】
根據(jù)調(diào)和數(shù)列定義知為等差數(shù)列,再由前20項(xiàng)的和為200知,最后根據(jù)基本不等式可求出的最大值?!驹斀狻恳?yàn)閿?shù)列為調(diào)和數(shù)列,所以,即為等差數(shù)列又,又大于0所以【點(diǎn)睛】本題考查了新定義“調(diào)和數(shù)列”的性質(zhì)、等差數(shù)列的性質(zhì)及其前n項(xiàng)公式、基本不等式的性質(zhì),屬于難題。4、A【解析】
根據(jù)充分必要條件的判定,即可得出結(jié)果.【詳解】當(dāng)時(shí),是函數(shù)的對(duì)稱軸,所以“”是“函數(shù)的圖像關(guān)于直線對(duì)稱”的充分條件,當(dāng)函數(shù)的圖像關(guān)于直線對(duì)稱時(shí),,推不出,所以“”是“函數(shù)的圖像關(guān)于直線對(duì)稱”的不必要條件,綜上選.【點(diǎn)睛】本題主要考查了充分條件、必要條件,余弦函數(shù)的對(duì)稱軸,屬于中檔題.5、B【解析】
∵,∴.∴,即,∴,,故選B.【考點(diǎn)定位】向量的坐標(biāo)運(yùn)算6、A【解析】
結(jié)合函數(shù)零點(diǎn)的定義,利用充分條件和必要條件的定義進(jìn)行判斷,即可得出答案.【詳解】由題意,當(dāng)時(shí),,函數(shù)與有交點(diǎn),故函數(shù)有零點(diǎn);當(dāng)有零點(diǎn)時(shí),不一定取,只要滿足都符合題意.所以“”是“函數(shù)有零點(diǎn)”的充分不必要條件.故答案為:A【點(diǎn)睛】本題主要考查了函數(shù)零點(diǎn)的概念,以及對(duì)數(shù)函數(shù)的圖象與性質(zhì)的應(yīng)用,其中解答中熟記函數(shù)零點(diǎn)的定義,以及對(duì)數(shù)函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.7、C【解析】
由三角函數(shù)的定義得,再利用誘導(dǎo)公式以及二倍角余弦公式求解.【詳解】由三角函數(shù)的定義,可得,則,故選C.【點(diǎn)睛】本題主要考查了三角函數(shù)的定義,以及二倍角的余弦公式的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.8、C【解析】設(shè)扇形的半徑為R,則R2θ=2,∴R2=1R=1,∴扇形的周長(zhǎng)為2R+θ·R=2+4=6(cm).9、C【解析】
根據(jù)等差數(shù)列的性質(zhì),結(jié)合,,分析出錯(cuò)誤結(jié)論.【詳解】由于,,所以,,,所以,與均為的最大值.而,所以,所以C選項(xiàng)結(jié)論錯(cuò)誤.故選:C.【點(diǎn)睛】本小題主要考查等差數(shù)列的性質(zhì),考查分析與推理能力,屬于基礎(chǔ)題.10、B【解析】
利用正弦定理可得,結(jié)合三角形內(nèi)角和定理與誘導(dǎo)公式可得,從而可得結(jié)果.【詳解】因?yàn)?,所以由正弦定理可得,,所以,所以是直角三角?【點(diǎn)睛】本題主要考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.弦定理是解三角形的有力工具,其常見用法有以下幾種:(1)知道兩邊和一邊的對(duì)角,求另一邊的對(duì)角(一定要注意討論鈍角與銳角);(2)知道兩角與一個(gè)角的對(duì)邊,求另一個(gè)角的對(duì)邊;(3)證明化簡(jiǎn)過(guò)程中邊角互化;(4)求三角形外接圓半徑.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)角度和弧度的互化公式求解即可.【詳解】.故答案為:.【點(diǎn)睛】本題考查角度和弧度的互化公式,屬于基礎(chǔ)題.12、【解析】
根據(jù)得,再利用正弦定理得,化簡(jiǎn)得出角的大小。再根據(jù)三角形內(nèi)角和即可得B.【詳解】根據(jù)題意,由正弦定理可得則所以答案為?!军c(diǎn)睛】本題主要考查向量與三角形正余弦定理的綜合應(yīng)用,屬于基礎(chǔ)題。13、【解析】
根據(jù)終邊相同的角的定義以及最小正角的要求,可確定結(jié)果.【詳解】因?yàn)?,所以與終邊相同的最小正角是.故答案為:.【點(diǎn)睛】本題主要考查終邊相同的角,屬于基礎(chǔ)題.14、【解析】
由三邊長(zhǎng)分別為3,5,的三角形是銳角三角形,若5是最大邊,則,解得范圍,若是最大邊,則,解得范圍,即可得出.【詳解】解:由三邊長(zhǎng)分別為3,5,的三角形是銳角三角形,若5是最大邊,則,解得.若是最大邊,則,解得.綜上可得:的取值范圍為.故答案為:.【點(diǎn)睛】本題考查了不等式的性質(zhì)與解法、余弦定理、分類討論方法,考查了推理能力與計(jì)算能力,屬于中檔題.15、【解析】
分別求出{}、{}的通項(xiàng)公式,再統(tǒng)一形式即可得解。【詳解】解:根據(jù)題意,又單調(diào)遞減,{}單調(diào)遞減增…①…②①+②,得,故代入,有成立,又…③…④③+④,得,故代入,成立。,綜上,【點(diǎn)睛】本題考查了等比數(shù)列性質(zhì)的靈活運(yùn)用,考查了分類思想和運(yùn)算能力,屬于難題。16、45【解析】
直接利用對(duì)數(shù)的運(yùn)算性質(zhì)計(jì)算即可,【詳解】.故答案為:45.【點(diǎn)睛】本題考查對(duì)數(shù)的運(yùn)算性質(zhì),考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見解析;(2)【解析】
(1)連接,由等腰三角形三線合一,可得,,再勾股定理可得,進(jìn)而根據(jù)線面垂直的判定定理得到平面;(2)根據(jù)等積法可得,結(jié)合(1)中結(jié)論,可得即為棱錐的高,代入棱錐的體積公式,可得答案.【詳解】證明:(1)連接.,,.,為中點(diǎn),,,為中點(diǎn),,,在中,,,,,,即.又,,平面平面.(2)等邊的面積為,為中點(diǎn)而,.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是直線與平面垂直的判定,棱錐的體積公式,熟練掌握空間直線與直線垂直、直線與平面垂直之間的轉(zhuǎn)化關(guān)系是解答的關(guān)鍵,屬于中檔題.18、(1)見解析(2)【解析】
(1)由,,結(jié)合面面平行判定定理可證得平面平面,根據(jù)面面平行的性質(zhì)證得結(jié)論;(2)連接交于點(diǎn),連接,利用線面垂直的判定定理可證得平面,從而可知所求角為,在中利用正弦求得結(jié)果.【詳解】(1)四邊形為正方形又平面平面又,平面平面平面,平面平面平面平面(2)連接交于點(diǎn),連接平面,平面又四邊形為正方形平面,平面即為與平面所成角且又即與平面所成角為:【點(diǎn)睛】本題考查線面平行的證明、直線與平面所成角的求解,涉及到面面平行的判定與性質(zhì)、線面垂直的判定與性質(zhì)的應(yīng)用;求解直線與平面所成角的關(guān)鍵是能夠通過(guò)垂直關(guān)系將所求角放入直角三角形中來(lái)進(jìn)行求解.19、(1)an=3﹣2×()n﹣1(2){m|1≤m}【解析】
(1)由已知,根據(jù)遞推公式可得,,……,,所有式子累加可得;(2)在(1)得出的基礎(chǔ)之上解不等式可得實(shí)數(shù)的取值范圍.【詳解】(1)由已知,根據(jù)遞推公式可得an﹣an﹣1=3×()n﹣2,an﹣1﹣an﹣2=3×()n﹣3,…,a2﹣a1=3×()0,由累加法得,當(dāng)n≥2時(shí),an﹣a1=3×()0+3×()1+…+3×()n﹣2,代入a1=1得,n≥2時(shí),an=11+2×(1﹣()n﹣1),又a1=1也滿足上式,故an=3﹣2×()n﹣1.(2)由1≤man≤5,得1≤man=m(3﹣2()n﹣1)≤5.因?yàn)?﹣2()n﹣1>0,所以,當(dāng)n為奇數(shù)時(shí),3﹣2()n﹣1∈[1,3);當(dāng)n為偶數(shù)時(shí),3﹣2()n﹣1∈(3,4],所以3﹣2()n﹣1最大值為4,最小值為1.對(duì)于任意的正整數(shù)n都有成立,所以1≤m.即所求實(shí)數(shù)m的取值范圍是{m|1≤m}.【點(diǎn)睛】本題主要考查數(shù)列的遞推公式知識(shí)和不等式的相關(guān)知識(shí),式子繁瑣,易錯(cuò),屬于中檔題.20、(1)(2)或【解析】
(1)化f(x)為sinx的二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),對(duì)a討論求出函數(shù)最大值;(2)由M(a)=2求出對(duì)應(yīng)的a值即可.【詳解】(1),∵,∴.①當(dāng),即時(shí),;②當(dāng),即時(shí),;③當(dāng),即時(shí),.∴(2)當(dāng)時(shí),(舍)或-2(舍);當(dāng)時(shí),;當(dāng)時(shí),.綜上或.【點(diǎn)睛】本題主要考查了三角函數(shù)恒等變換的應(yīng)用和二次函數(shù)的性質(zhì)問(wèn)題,考查了分段函數(shù)求值問(wèn)題,是中檔題.21、(1)證明見解析;(2)(Ⅰ);(Ⅱ)【解析】
(1)取中點(diǎn),連接,通過(guò)證明,證得平面,由此證得.(2)(I)通過(guò)證明,證得平面,由此證得,利用“直斜邊的中線等于斜邊的一半”這個(gè)定理及其逆定理,證得.(I
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年堿錳電池合作協(xié)議書
- 小學(xué)一年級(jí)2025年秋季學(xué)期語(yǔ)文教學(xué)計(jì)劃
- 2025年企業(yè)公轉(zhuǎn)私借款合同(2篇)
- 2025年九年級(jí)第二學(xué)期思想品德教學(xué)工作總結(jié)(三篇)
- 2025年個(gè)人房屋買賣協(xié)議例文(五篇)
- 2025年買賣合同要式合同(2篇)
- 2025年代理委托貸款協(xié)議(2篇)
- 2025年九年級(jí)初三班主任的工作總結(jié)模版(二篇)
- 2025年二手房買賣購(gòu)房合同樣本(三篇)
- 2025年個(gè)人私人借款合同標(biāo)準(zhǔn)版本(2篇)
- 外科手術(shù)及護(hù)理常規(guī)
- 學(xué)校開學(xué)教師安全培訓(xùn)
- 出口潛力分析報(bào)告
- 大美陜西歡迎你-最全面的陜西省簡(jiǎn)介課件
- 三位數(shù)減三位數(shù)的減法計(jì)算題 200道
- 米粉項(xiàng)目可行性研究報(bào)告
- 蛇年元宵節(jié)燈謎大全(附答案)
- 2023年上海中僑職業(yè)技術(shù)大學(xué)單招考試職業(yè)技能考試模擬試題及答案解析
- 中國(guó)教育公益領(lǐng)域發(fā)展報(bào)告
- 第2章第1節(jié)有機(jī)化學(xué)反應(yīng)類型課件高二下學(xué)期化學(xué)魯科版選擇性必修3
- 生物質(zhì)能利用原理與技術(shù) - 第二章生物質(zhì)能資源與植物
評(píng)論
0/150
提交評(píng)論