版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若不等式的解集為,則()A. B.C. D.2.在三棱柱中,底面,是正三角形,若,則該三棱柱外接球的表面積為()A. B. C. D.3.設(shè)是空間四個不同的點,在下列命題中,不正確的是A.若與共面,則與共面B.若與是異面直線,則與是異面直線C.若==,則D.若==,則=4.設(shè),滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.3 B. C.1 D.5.直線在軸上的截距為()A.2 B.﹣3 C.﹣2 D.36.若不等式對一切恒成立,則實數(shù)的最大值為()A.0 B.2 C. D.37.當(dāng)點到直線的距離最大時,的值為()A. B.0 C. D.18.如圖所示的陰影部分是由軸及曲線圍成,在矩形區(qū)域內(nèi)隨機取一點,則該點取自陰影部分的概率是()A. B. C. D.9.若一架飛機向目標(biāo)投彈,擊毀目標(biāo)的概率為,目標(biāo)未受損的概率為,則目標(biāo)受損但未被擊毀的概率為()A. B. C. D.10.已知是球O的球面上四點,面ABC,,則該球的半徑為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)函數(shù)(是常數(shù),).若在區(qū)間上具有單調(diào)性,且,則的最小正周期為_________.12.設(shè),其中,則的值為________.13.三棱錐P﹣ABC的底面ABC是等腰三角形,AC=BC=2,AB=2,側(cè)面PAB是等邊三角形且與底面ABC垂直,則該三棱錐的外接球表面積為_____.14.?dāng)?shù)列的前項和為,,,則________.15.把函數(shù)的圖像上各點向右平移個單位,再把橫坐標(biāo)變?yōu)樵瓉淼囊话耄v坐標(biāo)擴大到原來的4倍,則所得的函數(shù)的對稱中心坐標(biāo)為________16.已知,且,則的取值范圍是____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知平面向量(1)若,求;(2)若,求與夾角的余弦值.18.正四面體是側(cè)棱與底面邊長都相等的正三棱錐,它的對棱互相垂直.有一個如圖所示的正四面體,E,F(xiàn),G分別是棱AB,BC,CD的中點.(1)求證:面EFG;(2)求異面直線EG與AC所成角的大小.19.東莞市攝影協(xié)會準(zhǔn)備在2019年10月舉辦主題為“慶祖國70華誕——我們都是追夢人”攝影圖片展.通過平常人的鏡頭記錄國強民富的幸福生活,向祖國母親的生日獻禮,攝影協(xié)會收到了來自社會各界的大量作品,打算從眾多照片中選取100張照片展出,其參賽者年齡集中在之間,根據(jù)統(tǒng)計結(jié)果,做出頻率分布直方圖如圖:(1)求頻率分布直方圖中的值,并根據(jù)頻率分布直方圖,求這100位攝影者年齡的樣本平均數(shù)和中位數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);(2)為了展示不同年齡作者眼中的祖國形象,攝影協(xié)會按照分層抽樣的方法,計劃從這100件照片中抽出20個最佳作品,并邀請相應(yīng)作者參加“講述照片背后的故事”座談會.①在答題卡上的統(tǒng)計表中填出每組相應(yīng)抽取的人數(shù):年齡人數(shù)②若從年齡在的作者中選出2人把這些圖片和故事整理成冊,求這2人至少有一人的年齡在的概率.20.已知圓C的方程是(x-1)2+(y-1)2=4,直線l的方程為y=x+m,求當(dāng)m為何值時,(1)直線平分圓;(2)直線與圓相切.21.在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.求證:(1)AC⊥BC1;(2)AC1∥平面CDB1.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據(jù)一元二次不等式的解法,利用韋達定理列方程組,解方程組求得的值.【詳解】根據(jù)一元二次不等式的解法可知,是方程的兩個根,根據(jù)韋達定理有,解得,故選D.【點睛】本小題主要考查一元二次不等式的解集與對應(yīng)一元二次方程根的關(guān)系,考查根與系數(shù)關(guān)系,考查方程的思想,屬于基礎(chǔ)題.2、C【解析】
設(shè)球心為,的中心為,求出與,利用勾股定理求出外接球的半徑,代入球的表面積公式即可.【詳解】設(shè)球心為,的中心為,則,,球的半徑,所以球的表面積為.故選:C【點睛】本題考查多面體外接球問題,球的表面積公式,屬于中檔題.3、D【解析】
由空間四點共面的判斷可是A,B正確,;C,D畫出圖形,可以判定AD與BC不一定相等,證明BC與AD一定垂直.【詳解】對于選項A,若與共面,則與共面,正確;對于選項B,若與是異面直線,則四點不共面,則與是異面直線,正確;如圖,空間四邊形ABCD中,AB=AC,DB=DC,則AD與BC不一定相等,∴D錯誤;對于C,當(dāng)四點共面時顯然成立,當(dāng)四點不共面時,取BC的中點M,連接AM、DM,AM⊥BC,DM⊥BC,∴BC⊥平面ADM,∴BC⊥AD,∴C正確;【點睛】本題通過命題真假的判定,考查了空間中的直線共面與異面以及垂直問題,是綜合題.4、C【解析】
作出不等式組對應(yīng)的平面區(qū)域,結(jié)合圖形找出最優(yōu)解,從而求出目標(biāo)函數(shù)的最大值.【詳解】作出不等式組對應(yīng)的平面區(qū)域,如陰影部分所示;平移直線,由圖像可知當(dāng)直線經(jīng)過點時,最大.,解得,即,所以的最大值為1.故答案為選C【點睛】本題給出二元一次不等式組,求目標(biāo)函數(shù)的最大值,著重考查二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃,也考查了數(shù)形結(jié)合的解題思想方法,屬于基礎(chǔ)題.5、B【解析】
令,求出值則是截距?!驹斀狻恐本€方程化為斜截式為:,時,,所以,在軸上的截距為-3?!军c睛】軸上的截距:即令,求出值;同理軸上的截距:即令,求出值6、C【解析】
采用參變分離法對不等式變形,然后求解變形后的函數(shù)的值域,根據(jù)參數(shù)與新函數(shù)的關(guān)系求解參數(shù)最值.【詳解】因為不等式對一切恒成立,所以對一切,,即恒成立.令.易知在內(nèi)為增函數(shù).所以當(dāng)時,,所以的最大值是.故選C.【點睛】常見的求解參數(shù)范圍的方法:(1)分類討論法(從臨界值、特殊值出發(fā));(2)參變分離法(考慮新函數(shù)與參數(shù)的關(guān)系).7、C【解析】直線過定點Q(2,1),所以點到直線的距離最大時PQ垂直直線,即,選C.8、A【解析】,所以,故選A。9、D【解析】
由已知條件利用對立事件概率計算公式直接求解.【詳解】由于一架飛機向目標(biāo)投彈,擊毀目標(biāo)的概率為,目標(biāo)未受損的概率為;所以目標(biāo)受損的概率為:;目標(biāo)受損分為擊毀和未被擊毀,它們是對立事件;所以目標(biāo)受損的概率目標(biāo)受損被擊毀的概率目標(biāo)受損未被擊毀的概率;故目標(biāo)受損但未被擊毀的概率目標(biāo)受損的概率目標(biāo)受損被擊毀的概率,即目標(biāo)受損但未被擊毀的概率;故答案選D【點睛】本題考查概率的求法,注意對立事件概率計算公式的合理運用,屬于基礎(chǔ)題.10、D【解析】
根據(jù)面,,得到三棱錐的三條側(cè)棱兩兩垂直,以三條側(cè)棱為棱長得到一個長方體,且長方體的各頂點都在該球上,長方體的對角線的長就是該球的直徑,從而得到答案。【詳解】面,三棱錐的三條側(cè)棱,,兩兩垂直,可以以三條側(cè)棱,,為棱長得到一個長方體,且長方體的各頂點都在該球上,長方體的對角線的長就是該球的直徑,即則該球的半徑為故答案選D【點睛】本題考查三棱錐外接球的半徑的求法,本題解題的關(guān)鍵是以三條側(cè)棱為棱長得到一個長方體,三棱錐的外接球,即為該長方體的外接球,利用長方體外接球的直徑為長對角線的長,屬于基礎(chǔ)題。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由在區(qū)間上具有單調(diào)性,且知,函數(shù)的對稱中心為,由知函數(shù)的對稱軸為直線,設(shè)函數(shù)的最小正周期為,所以,,即,所以,解得,故答案為.考點:函數(shù)的對稱性、周期性,屬于中檔題.12、【解析】
由兩角差的正弦公式以及誘導(dǎo)公式,即可求出的值.【詳解】,所以,因為,故.【點睛】本題主要考查兩角差的正弦公式的逆用以及誘導(dǎo)公式的應(yīng)用.13、【解析】
求出的外接圓半徑,的外接圓半徑,求出外接球的半徑,即可求出該三棱錐的外接球的表面積.【詳解】由題意,設(shè)的外心為,的外心為,則的外接圓半徑,在中,因為,由余弦定理可得,所以,所以的外接圓半徑,在等邊中,由,所以,所以,設(shè)球心為,球的半徑為,則,又由面,面,則,所以該三棱錐的外接球的表面積為.故答案為:.【點睛】本題主要考查了三棱錐的外接球的表面積的求解,其中解答中熟練應(yīng)用空間幾何體的結(jié)構(gòu)特征,確定球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與運算能力,屬于中檔試題.14、18【解析】
利用,化簡得到數(shù)列是首項為,公比為的等比數(shù)列,利用,即可求解.【詳解】,即所以數(shù)列是首項為,公比為的等比數(shù)列即所以故答案為:【點睛】本題主要考查了與的關(guān)系以及等比數(shù)列的通項公式,屬于基礎(chǔ)題.15、,【解析】
根據(jù)三角函數(shù)的圖象變換,求得函數(shù)的解析式,進而求得函數(shù)的對稱中心,得到答案.【詳解】由題意,把函數(shù)的圖像上各點向右平移個單位,可得,再把圖象上點的橫坐標(biāo)變?yōu)樵瓉淼囊话耄傻?,把函?shù)縱坐標(biāo)擴大到原來的4倍,可得,令,解得,所以函數(shù)的對稱中心為.故答案為:.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的對稱中心的求解,其中解答中熟練三角函數(shù)的圖象變換,以及三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、【解析】
利用正弦函數(shù)的定義域求得值域,即的范圍,再根據(jù)反余弦函數(shù)的定義可求得的取值范圍.【詳解】因為且,所以,則根據(jù)反余弦函數(shù)的定義可得,則的取值范圍是.故答案為:【點睛】本題考查了正弦函數(shù)的定義域和值域,考查了反余弦函數(shù)的定義,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由題可得,解出,,進而得出答案.(2)由題可得,,再由計算得出答案,【詳解】因為,所以,即解得所以(2)若,則所以,,,所以【點睛】本題主要考查的向量的模以及數(shù)量積,屬于簡單題.18、(1)證明見解析;(2)【解析】
(1)連接EF,F(xiàn)G,GE,通過三角形的中位線可得,進而可得面EFG;(2)由題可得為異面直線EG與AC所成角,根據(jù)正四棱錐的特點得到為等腰直角三角形,進而可得結(jié)果.【詳解】解:(1)連接EF,F(xiàn)G,GE,如圖,E,F(xiàn)分別是棱AB,BC的中點,,又面EFG,面EFG,面EFG;(2)由(1),則為異面直線EG與AC所成角,AC與BD是正四面體的對棱,,又,,又,為等腰直角三角形,,即異面直線EG與AC所成角的大小為.【點睛】本題考查線面平行的證明,以及異面直線所成的角,通過直線平行找到異面直線所成角的平面角是關(guān)鍵,本題難度不大.19、(1),平均數(shù)為,中位數(shù)為(2)①見解析②【解析】
(1)由頻率分布直方圖各個小矩形的面積之和為1可得,用區(qū)間中點值代替可計算均值,中位數(shù)把頻率分布直方圖中小矩形面積等分.(2)①分層抽樣,是按比例抽取人數(shù);②年齡在有2人,在有4人,設(shè)在的是,,在的是,可用列舉法列舉出選2人的所有可能,然后可計算出概率.【詳解】(1)由頻率分布直方圖各個小矩形的面積之和為1,得在頻率分布直方圖中,這100位參賽者年齡的樣本平均數(shù)為:設(shè)中位數(shù)為,由,解得.(2)①每組應(yīng)各抽取人數(shù)如下表:年齡人數(shù)12485②根據(jù)分層抽樣的原理,年齡在有2人,在有4人,設(shè)在的是,,在的是,列舉選出2人的所有可能如下:,共15種情況.設(shè)“這2人至少有一人的年齡在區(qū)間”為事件,則包含:共9種情況則【點睛】本題考查頻率分布直方圖,考查樣本數(shù)據(jù)特征、古典概型,屬于基礎(chǔ)題型.20、(1)m=0;(2)m=±2.【解析】試題分析:(1)直線平分圓,即直線過圓心,將圓心坐標(biāo)代入直線方程可得m值(2)根據(jù)圓心到直線距離等于半徑列方程,解得m值試題解析:解:(1)∵直線平分圓,所以圓心在直線y=x+m上,即有m=0.(2)∵直線與圓相切,所以圓心到直線的距離等于半徑,∴d==2,m=±2.即m=±2時,直線l與圓相切.點睛:判斷直線與圓的位置關(guān)系的常見方法(1)幾何法:利用d與r的關(guān)系.(2)代數(shù)法:聯(lián)立方程之后利用Δ判斷.(3)點與圓的位置關(guān)系法:若直線恒過
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- LY/T 3413-2024人造板及其制品中氣味物質(zhì)的測定氣相色譜-質(zhì)譜-嗅聞法
- LY/T 2135-2024石榴
- 七年級數(shù)學(xué)上冊第5章一元一次方程5.4一元一次方程的應(yīng)用第1課時基本數(shù)量與行程問題聽評課記錄(新版浙教版)
- 冀教版七年級數(shù)學(xué)上冊聽評課記錄5.4.4 追及、方案問題
- 人教版數(shù)學(xué)九年級上冊26.1.2《二次函數(shù)的圖象》聽評課記錄
- 生態(tài)產(chǎn)品供應(yīng)合同(2篇)
- 環(huán)境監(jiān)測系統(tǒng)招標(biāo)合同(2篇)
- 部編版八年級歷史上冊《第16課 毛澤東開辟井岡山道路》聽課評課記錄
- 晉教版地理七年級上冊《3.1 海陸分布》聽課評課記錄4
- 首師大版道德與法治七年級上冊2.1《青春悄悄來》聽課評課記錄
- 學(xué)前兒童美術(shù)教育與活動指導(dǎo)第4版全套教學(xué)課件
- 標(biāo)桿門店打造方案
- 2022-2023年人教版九年級化學(xué)(上冊)期末試題及答案(完整)
- 中華民族共同體概論課件專家版2第二講 樹立正確的中華民族歷史觀
- 食品安全公益訴訟
- 中學(xué)生低碳生活調(diào)查報告
- 游泳池經(jīng)營合作方案
- 弱電項目經(jīng)理工作總結(jié)
- 擘畫未來技術(shù)藍圖
- 基于情報基本理論的公安情報
- 《“白山黑水”-東北三省》示范課課件(第1課時)
評論
0/150
提交評論