版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知點(diǎn),,則與向量方向相同的單位向量為()A. B. C. D.2.對(duì)任意實(shí)數(shù)x,表示不超過x的最大整數(shù),如,,關(guān)于函數(shù),有下列命題:①是周期函數(shù);②是偶函數(shù);③函數(shù)的值域?yàn)?;④函?shù)在區(qū)間內(nèi)有兩個(gè)不同的零點(diǎn),其中正確的命題為()A.①③ B.②④ C.①②③ D.①②④3.中,,則是()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.等腰直角三角形4.若是等比數(shù)列,下列結(jié)論中不正確的是()A.一定是等比數(shù)列; B.一定是等比數(shù)列;C.一定是等比數(shù)列; D.一定是等比數(shù)列5.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐P﹣ABCD為陽馬,側(cè)棱PA⊥底面ABCD,PA=AB=AD,E為棱PA的中點(diǎn),則異面直線AB與CE所成角的正弦值為()A. B. C. D.6.設(shè)函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),,則()A.-4 B. C. D.7.?dāng)?shù)列滿足“對(duì)任意正整數(shù),都有”的充要條件是()A.是等差數(shù)列 B.與都是等差數(shù)列C.是等差數(shù)列 D.與都是等差數(shù)列且公差相等8.已知,若,則的值是().A.-1 B.1 C.2 D.-29.在正方體中,為棱的中點(diǎn),則異面直線與所成角的余弦值為()A. B. C. D.10.在直角坐標(biāo)系中,已知點(diǎn),則的面積為()A. B.4 C. D.8二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線與圓相交于,兩點(diǎn),則=______.12.已知斜率為的直線的傾斜角為,則________.13.已知向量,,且,則_______.14.已知是內(nèi)的一點(diǎn),,,則_______;若,則_______.15.設(shè)的內(nèi)角,,所對(duì)的邊分別為,,.已知,,如果解此三角形有且只有兩個(gè)解,則的取值范圍是_____.16.已知向量夾角為,且,則__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知三棱錐中,,.若平面分別與棱相交于點(diǎn)且平面.求證:(1);(2).18.已知,且.(1)求的值;(2)求的值.19.如圖,在三棱錐P-ABC中,PA⊥底面ABC,D是PC的中點(diǎn).已知∠BAC=,AB=2,AC=2,PA=2.求:(1)三棱錐P-ABC的體積;(2)異面直線BC與AD所成的角的大?。ńY(jié)果用反三角函數(shù)值表示).20.已知.(Ⅰ)化簡;(Ⅱ)已知,求的值.21.等差數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
由題得,設(shè)與向量方向相同的單位向量為,其中,利用列方程即可得解.【詳解】由題可得:,設(shè)與向量方向相同的單位向量為,其中,則,解得:或(舍去)所以與向量方向相同的單位向量為故選A【點(diǎn)睛】本題主要考查了單位向量的概念及方程思想,還考查了平面向量共線定理的應(yīng)用,考查計(jì)算能力,屬于較易題.2、A【解析】
根據(jù)的表達(dá)式,結(jié)合函數(shù)的周期性,奇偶性和值域分別進(jìn)行判斷即可得到結(jié)論.【詳解】是周期函數(shù),3是它的一個(gè)周期,故①正確.,結(jié)合函數(shù)的周期性可得函數(shù)的值域?yàn)?,則函數(shù)不是偶函數(shù),故②錯(cuò)誤.,故在區(qū)間內(nèi)有3個(gè)不同的零點(diǎn),故④錯(cuò)誤.故選:A【點(diǎn)睛】本題考查了取整函數(shù)綜合問題,考查了學(xué)習(xí)綜合分析,轉(zhuǎn)化與劃歸,數(shù)學(xué)運(yùn)算的能力,屬于難題.3、C【解析】
由平面向量數(shù)量積運(yùn)算可得,即,得解.【詳解】解:在中,,則,即,則為鈍角,所以為鈍角三角形,故選:C.【點(diǎn)睛】本題考查了平面向量數(shù)量積運(yùn)算,重點(diǎn)考查了向量的夾角,屬基礎(chǔ)題.4、C【解析】
判斷等比數(shù)列,可根據(jù)為常數(shù)來判斷.【詳解】設(shè)等比數(shù)列的公比為,則對(duì)A:為常數(shù),故一定是等比數(shù)列;對(duì)B:為常數(shù),故一定是等比數(shù)列;對(duì)C:當(dāng)時(shí),,此時(shí)為每項(xiàng)均為0的常數(shù)列;對(duì)D:為常數(shù),故一定是等比數(shù)列.故選:C.【點(diǎn)睛】本題主要考查等比數(shù)列的判定,若數(shù)列的后項(xiàng)除以前一項(xiàng)為常數(shù),則該數(shù)列為等比數(shù)列.本題選項(xiàng)C容易忽略時(shí)這種情況.5、B【解析】
由異面直線所成角的定義及求法,得到為所求,連接,由為直角三角形,即可求解.【詳解】在四棱錐中,,可得即為異面直線與所成角,連接,則為直角三角形,不妨設(shè),則,所以,故選B.【點(diǎn)睛】本題主要考查了異面直線所成角的作法及求法,其中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.6、A【解析】
由奇函數(shù)的性質(zhì)可得:即可求出【詳解】因?yàn)槭嵌x在上的奇函數(shù),所以又因?yàn)楫?dāng)時(shí),,所以,所以,選A.【點(diǎn)睛】本題主要考查了函數(shù)的性質(zhì)中的奇偶性。其中奇函數(shù)主要有以下幾點(diǎn)性質(zhì):1、圖形關(guān)于原點(diǎn)對(duì)稱。2、在定義域上滿足。3、若定義域包含0,一定有。7、D【解析】
將變形為和,根據(jù)等差數(shù)列的定義即可得出與都是等差數(shù)列且公差相等,反過來,利用等差數(shù)列的定義得到,變形即可得出,從而得到“”的充要條件是“與都是等差數(shù)列且公差相等”.【詳解】由得:即數(shù)列與均為等差數(shù)列且公差相等,故“”是“與都是等差數(shù)列且公差相等”的充分條件反之,與都是等差數(shù)列且公差相等必有成立變形得:故“與都是等差數(shù)列且公差相等”是“”的必要條件綜上,“”的充要條件是“與都是等差數(shù)列且公差相等”故選:D.【點(diǎn)睛】本題主要考查了等差數(shù)列的判斷,考查了充分必要條件的判斷,屬于中等題.8、C【解析】
先求出的坐標(biāo),再利用向量平行的坐標(biāo)表示求出c的值.【詳解】由題得,因?yàn)?,所?(c-2)-2×0=0,所以c=2.故選C【點(diǎn)睛】本題主要考查向量的坐標(biāo)計(jì)算和向量共線的坐標(biāo)表示,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.9、D【解析】
利用,得出異面直線與所成的角為,然后在中利用銳角三角函數(shù)求出.【詳解】如下圖所示,設(shè)正方體的棱長為,四邊形為正方形,所以,,所以,異面直線與所成的角為,在正方體中,平面,平面,,,,,在中,,,因此,異面直線與所成角的余弦值為,故選D.【點(diǎn)睛】本題考查異面直線所成角的計(jì)算,一般利用平移直線,選擇合適的三角形,利用銳角三角函數(shù)或余弦定理求解,考查推理能力與計(jì)算能力,屬于中等題.10、B【解析】
求出直線AB的方程及點(diǎn)C到直線AB的距離d,再求出,代入即可得解.【詳解】,即,點(diǎn)到直線的距離,,的面積為:.故選:B【點(diǎn)睛】本題考查直線的點(diǎn)斜式方程,點(diǎn)到直線的距離與兩點(diǎn)之間的距離公式,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
將圓的方程化為標(biāo)準(zhǔn)方程,由點(diǎn)到直線距離公式求得弦心距,再結(jié)合垂徑定理即可求得.【詳解】圓,變形可得所以圓心坐標(biāo)為,半徑直線,變形可得由點(diǎn)到直線距離公式可得弦心距為由垂徑定理可知故答案為:【點(diǎn)睛】本題考查了直線與圓相交時(shí)的弦長求法,點(diǎn)到直線距離公式的應(yīng)用及垂徑定理的用法,屬于基礎(chǔ)題.12、【解析】
由直線的斜率公式可得=,分析可得,由同角三角函數(shù)的基本關(guān)系式計(jì)算可得答案.【詳解】根據(jù)題意,直線的傾斜角為,其斜率為,則有=,則,必有,即,平方有:,得,故,解得或(舍).故答案為﹣【點(diǎn)睛】本題考查直線的傾斜角,涉及同角三角函數(shù)的基本關(guān)系式,屬于基礎(chǔ)題.13、-2或3【解析】
用坐標(biāo)表示向量,然后根據(jù)垂直關(guān)系得到坐標(biāo)運(yùn)算關(guān)系,求出結(jié)果.【詳解】由題意得:或本題正確結(jié)果:或【點(diǎn)睛】本題考查向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.14、【解析】
對(duì)式子兩邊平方,再利用向量的數(shù)量積運(yùn)算即可;式子兩邊分別與向量,進(jìn)行數(shù)量積運(yùn)算,得到關(guān)于的方程組,解方程組即可得答案.【詳解】∵,∴;∵,∴解得:,∴.故答案為:;.【點(diǎn)睛】本題考查向量數(shù)量積的運(yùn)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意將向量等式轉(zhuǎn)化為數(shù)量關(guān)系的方法.15、【解析】
由余弦定理寫出c與x的等式,再由有兩個(gè)正解,解出x的取值范圍【詳解】根據(jù)余弦定理:代入數(shù)據(jù)并整理有,有且僅有兩個(gè)解,記為則:【點(diǎn)睛】本題主要考查余弦定理以及韋達(dá)定理,屬于中檔題.16、【解析】試題分析:的夾角,,,,.考點(diǎn):向量的運(yùn)算.【思路點(diǎn)晴】平面向量的數(shù)量積計(jì)算問題,往往有兩種形式,一是利用數(shù)量積的定義式,二是利用數(shù)量積的坐標(biāo)運(yùn)算公式,涉及幾何圖形的問題,先建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,可起到化繁為簡的妙用.利用向量夾角公式、模公式及向量垂直的充要條件,可將有關(guān)角度問題、線段長問題及垂直問題轉(zhuǎn)化為向量的數(shù)量積來解決.列出方程組求解未知數(shù).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】
(1)利用線面平行的性質(zhì)定理可得線線平行,最后利用平行公理可以證明出;(2)利用線面垂直的判定定理可以證明線面垂直,利用線面垂直的性質(zhì)可以證明線線垂直,利用平行線的性質(zhì),最后證明出.【詳解】證明(1)因?yàn)槠矫?,平面平?平面,所以有,同理可證出,根據(jù)平行公理,可得;(2)因?yàn)?,?平面,所以平面,而平面,所以,由(1)可知,所以.【點(diǎn)睛】本題考查了線面平行的性質(zhì)定理,線面垂直的判定定理、以及平行公理的應(yīng)用.18、(1)(2)【解析】
(1)由即可求得;(2)可由的差角公式進(jìn)行求解【詳解】(1)由題可知,,,(2),又由前式可判斷,,,故,【點(diǎn)睛】本題考查三角函數(shù)的計(jì)算,二倍角公式的使用,兩角差公式的使用,易錯(cuò)點(diǎn)為忽略具體的角度范圍,屬于中檔題19、(1);(2).【解析】
(1),三棱錐P-ABC的體積為.(2)取PB的中點(diǎn)E,連接DE、AE,則ED∥BC,所以∠ADE(或其補(bǔ)角)是異面直線BC與AD所成的角.在三角形ADE中,DE=2,AE=,AD=2,,所以∠ADE=.因此,異面直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025合同模板股權(quán)投資合作合同
- 解碼生命奧秘醫(yī)療技術(shù)的未來展望
- 科技展會(huì)的活動(dòng)創(chuàng)新與亮點(diǎn)挖掘
- 水利建設(shè)對(duì)高效農(nóng)業(yè)發(fā)展的推動(dòng)作用
- 課題申報(bào)參考:客家珍稀文書文字研究
- 課題申報(bào)參考:抗戰(zhàn)時(shí)期樂西公路與沿線各民族國家認(rèn)同建構(gòu)研究
- 數(shù)字技術(shù)與生態(tài)農(nóng)業(yè)的協(xié)同創(chuàng)新策略
- 深井泵房施工組織設(shè)計(jì)
- 歷年英語四級(jí)真題及答案
- 2025年華師大新版七年級(jí)歷史下冊(cè)月考試卷
- 數(shù)學(xué)-山東省2025年1月濟(jì)南市高三期末學(xué)習(xí)質(zhì)量檢測濟(jì)南期末試題和答案
- 中儲(chǔ)糧黑龍江分公司社招2025年學(xué)習(xí)資料
- 湖南省長沙市2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期期末考試試卷
- 船舶行業(yè)維修保養(yǎng)合同
- 2024年林地使用權(quán)轉(zhuǎn)讓協(xié)議書
- 物流有限公司安全生產(chǎn)專項(xiàng)整治三年行動(dòng)實(shí)施方案全國安全生產(chǎn)專項(xiàng)整治三年行動(dòng)計(jì)劃
- 2025屆江蘇省13市高三最后一卷生物試卷含解析
- 產(chǎn)鉗助產(chǎn)護(hù)理查房
- 招聘專員轉(zhuǎn)正述職報(bào)告
- (完整版)小學(xué)生24點(diǎn)習(xí)題大全(含答案)
- 四川省2023年普通高等學(xué)校高職教育單獨(dú)招生文化考試(中職類)數(shù)學(xué)試題(原卷版)
評(píng)論
0/150
提交評(píng)論