版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在下列各圖中,每個圖的兩個變量具有相關(guān)關(guān)系的圖是()A.(1)(2) B.(1)(3) C.(2)(4) D.(2)(3)2.在正方體中,為棱的中點,則異面直線與所成角的正切值為A. B. C. D.3.已知m,n是兩條不同的直線,是三個不同的平面,則下列命題正確的是()A.若,,則 B.若,則C.若,,,則 D.若,,則4.在同一直角坐標(biāo)系中,函數(shù)且的圖象可能是()A. B.C. D.5.某象棋俱樂部有隊員5人,其中女隊員2人,現(xiàn)隨機(jī)選派2人參加一個象棋比賽,則選出的2人中恰有1人是女隊員的概率為()A. B. C. D.6.函數(shù)是().A.周期為的偶函數(shù) B.周期為的奇函數(shù)C.周期為的偶函數(shù) D.周期為奇函數(shù)7.已知,則等于()A. B. C. D.38.以下現(xiàn)象是隨機(jī)現(xiàn)象的是A.標(biāo)準(zhǔn)大氣壓下,水加熱到100℃,必會沸騰B.長和寬分別為a,b的矩形,其面積為C.走到十字路口,遇到紅燈D.三角形內(nèi)角和為180°9.“”是“函數(shù)的圖像關(guān)于直線對稱”的()條件A.充分非必要 B.必要非充分 C.充要 D.既不充分又非必要10.與直線平行,且到的距離為的直線方程為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.不等式的解集為________12.已知是內(nèi)的一點,,,則_______;若,則_______.13.已知,則________.14.如圖,已知六棱錐的底面是正六邊形,平面,,給出下列結(jié)論:①;②直線平面;③平面平面;④異面直線與所成角為;⑤直線與平面所成角的余弦值為.其中正確的有_______(把所有正確的序號都填上)15.下列關(guān)于函數(shù)與的命題中正確的結(jié)論是______.①它們互為反函數(shù);②都是增函數(shù);③都是周期函數(shù);④都是奇函數(shù).16.已知等差數(shù)列則.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前n項和為,且,求數(shù)列的通項公式.18.已知是等差數(shù)列,滿足,,且數(shù)列的前n項和.(1)求數(shù)列和的通項公式;(2)令,數(shù)列的前n項和為,求證:.19.如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點.(Ⅰ)求證:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.20.設(shè),求函數(shù)的最小值為__________.21.如圖幾何體中,底面為正方形,平面,,且.(1)求證:平面;(2)求與平面所成角的大小.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
仔細(xì)觀察圖象,尋找散點圖間的相互關(guān)系,主要觀察這些散點是否圍繞一條曲線附近排列著,由此能夠得到正確答案.【詳解】散點圖(1)中,所有的散點都在曲線上,所以(1)具有函數(shù)關(guān)系;
散點圖(2)中,所有的散點都分布在一條直線的附近,所以(2)具有相關(guān)關(guān)系;
散點圖(3)中,所有的散點都分布在一條曲線的附近,所以(3)具有相關(guān)關(guān)系,
散點圖(4)中,所有的散點雜亂無章,沒有分布在一條曲線的附近,所以(4)沒有相關(guān)關(guān)系.
故選D.【點睛】本題考查散點圖和相關(guān)關(guān)系,是基礎(chǔ)題.2、C【解析】
利用正方體中,,將問題轉(zhuǎn)化為求共面直線與所成角的正切值,在中進(jìn)行計算即可.【詳解】在正方體中,,所以異面直線與所成角為,設(shè)正方體邊長為,則由為棱的中點,可得,所以,則.故選C.【點睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個平面中;②利用邊角關(guān)系,找到(或構(gòu)造)所求角所在的三角形;③求出三邊或三邊比例關(guān)系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因為直線夾角為銳角,所以②對應(yīng)的余弦取絕對值即為直線所成角的余弦值.3、C【解析】
利用線面垂直、線面平行、面面垂直的性質(zhì)定理分別對選項分析選擇.【詳解】對于A,若,,則或者;故A錯誤;對于B,若,則可能在內(nèi)或者平行于;故B錯誤;對于C,若,,,過分作平面于,作平面,則根據(jù)線面平行的性質(zhì)定理得,,∴,根據(jù)線面平行的判定定理,可得,又,,根據(jù)線面平行的性質(zhì)定理可得,又,∴;故C正確;對于D.若,,則與可能垂直,如墻角;故D錯誤;故選:C.【點睛】本題考查了面面垂直、線面平行、線面垂直的性質(zhì)定理及應(yīng)用,涉及空間線線平行的傳遞性,考查了空間想象能力,熟練運用定理是關(guān)鍵.4、D【解析】
本題通過討論的不同取值情況,分別討論本題指數(shù)函數(shù)、對數(shù)函數(shù)的圖象和,結(jié)合選項,判斷得出正確結(jié)論.題目不難,注重重要知識、基礎(chǔ)知識、邏輯推理能力的考查.【詳解】當(dāng)時,函數(shù)過定點且單調(diào)遞減,則函數(shù)過定點且單調(diào)遞增,函數(shù)過定點且單調(diào)遞減,D選項符合;當(dāng)時,函數(shù)過定點且單調(diào)遞增,則函數(shù)過定點且單調(diào)遞減,函數(shù)過定點且單調(diào)遞增,各選項均不符合.綜上,選D.【點睛】易出現(xiàn)的錯誤有,一是指數(shù)函數(shù)、對數(shù)函數(shù)的圖象和性質(zhì)掌握不熟,導(dǎo)致判斷失誤;二是不能通過討論的不同取值范圍,認(rèn)識函數(shù)的單調(diào)性.5、B【解析】
直接利用概率公式計算得到答案.【詳解】故選:【點睛】本題考查了概率的計算,屬于簡單題.6、B【解析】因,故是奇函數(shù),且最小正周期是,即,應(yīng)選答案B.點睛:解答本題時充分運用題設(shè)條件,先借助二倍角的余弦公式的變形,將函數(shù)的形式進(jìn)行化簡,然后再驗證函數(shù)的奇偶性與周期性,從而獲得問題的答案.7、C【解析】
等式分子分母同時除以即可得解.【詳解】由可得.故選:C.【點睛】本題考查了三角函數(shù)商數(shù)關(guān)系的應(yīng)用,屬于基礎(chǔ)題.8、C【解析】
對每一個選項逐一分析判斷得解.【詳解】A.標(biāo)準(zhǔn)大氣壓下,水加熱到100℃,必會沸騰,是必然事件;B.長和寬分別為a,b的矩形,其面積為,是必然事件;C.走到十字路口,遇到紅燈,是隨機(jī)事件;D.三角形內(nèi)角和為180°,是必然事件.故選C【點睛】本題主要考查必然事件、隨機(jī)事件的定義與判斷,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.9、A【解析】
根據(jù)充分必要條件的判定,即可得出結(jié)果.【詳解】當(dāng)時,是函數(shù)的對稱軸,所以“”是“函數(shù)的圖像關(guān)于直線對稱”的充分條件,當(dāng)函數(shù)的圖像關(guān)于直線對稱時,,推不出,所以“”是“函數(shù)的圖像關(guān)于直線對稱”的不必要條件,綜上選.【點睛】本題主要考查了充分條件、必要條件,余弦函數(shù)的對稱軸,屬于中檔題.10、B【解析】試題分析:與直線平行的直線設(shè)為與的距離為考點:兩直線間的距離點評:兩平行直線間的距離二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】因為所以,即不等式的解集為.12、【解析】
對式子兩邊平方,再利用向量的數(shù)量積運算即可;式子兩邊分別與向量,進(jìn)行數(shù)量積運算,得到關(guān)于的方程組,解方程組即可得答案.【詳解】∵,∴;∵,∴解得:,∴.故答案為:;.【點睛】本題考查向量數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意將向量等式轉(zhuǎn)化為數(shù)量關(guān)系的方法.13、【解析】
利用向量內(nèi)積的坐標(biāo)運算以及向量模的坐標(biāo)表示,準(zhǔn)確運算,即可求解.【詳解】由題意,向量,則,,所以.故答案為【點睛】本題主要考查了向量內(nèi)積的坐標(biāo)運算,以及向量模的坐標(biāo)運算的應(yīng)用,其中解答中熟記向量的數(shù)量積的運算公式,準(zhǔn)確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、①③④⑤【解析】
設(shè)出幾何體的邊長,根據(jù)正六邊形的性質(zhì),線面垂直的判定定理,線面平行的判定定理,面面垂直的判定定理,異面直線所成角,線面角有關(guān)知識,對五個結(jié)論逐一分析,由此得出正確結(jié)論的序號.【詳解】設(shè)正六邊形長為,則.根據(jù)正六邊形的幾何性質(zhì)可知,由平面得,所以平面,所以,故①正確.由于,而,所以直線平面不正確,故②錯誤.易證得,所以平面,所以平面平面,故③正確.由于,所以是異面直線與所成角,在中,,故,也即異面直線與所成角為,故④正確.連接,則,由①證明過程可知平面,所以平面,所以是所求線面角,在三角形中,,由余弦定理得,故⑤正確.綜上所述,正確的序號為①③④⑤.【點睛】本小題主要考查線面垂直的判定,面面垂直的判定,考查線線角、線面角的求法,屬于中檔題.15、④【解析】
利用反函數(shù),增減性,周期函數(shù),奇偶性判斷即可【詳解】①,當(dāng)時,的反函數(shù)是,故錯誤;②,當(dāng)時,是增函數(shù),故錯誤;③,不是周期函數(shù),故錯誤;④,與都是奇函數(shù),故正確故答案為④【點睛】本題考查正弦函數(shù)及其反函數(shù)的性質(zhì),熟記其基本性質(zhì)是關(guān)鍵,是基礎(chǔ)題16、1【解析】試題分析:根據(jù)公式,,將代入,計算得n=1.考點:等差數(shù)列的通項公式.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】
利用公式,計算的通項公式,再驗證時的情況.【詳解】當(dāng)時,;當(dāng)時,不滿足上式.∴【點睛】本題考查了利用求數(shù)列通項公式,忽略的情況是容易犯的錯誤.18、(1),(2)證明見解析【解析】
(1)計算,得到,再計算的通項公式得到答案.(2),利用裂項求和得到得到證明.【詳解】(1),,.,.是等差數(shù)列,所以,所以.當(dāng)時,,又,所以,當(dāng)時,,符合,所以的通項公式是.(2).所以,即.【點睛】本題考查了數(shù)列的通項公式,裂項求和,意在考查學(xué)生對于數(shù)列公式方法的靈活運用.19、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析.【解析】
(Ⅰ)由題意利用線面垂直的判定定理即可證得題中的結(jié)論;(Ⅱ)由幾何體的空間結(jié)構(gòu)特征首先證得線面垂直,然后利用面面垂直的判斷定理可得面面垂直;(Ⅲ)由題意,利用平行四邊形的性質(zhì)和線面平行的判定定理即可找到滿足題意的點.【詳解】(Ⅰ)證明:因為平面,所以;因為底面是菱形,所以;因為,平面,所以平面.(Ⅱ)證明:因為底面是菱形且,所以為正三角形,所以,因為,所以;因為平面,平面,所以;因為所以平面,平面,所以平面平面.(Ⅲ)存在點為中點時,滿足平面;理由如下:分別取的中點,連接,在三角形中,且;在菱形中,為中點,所以且,所以且,即四邊形為平行四邊形,所以;又平面,平面,所以平面.【點睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理,立體幾何中的探索問題等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.20、9【解析】試題分析:本題解題的關(guān)鍵在于關(guān)注分母,充分運用發(fā)散性思維,經(jīng)過同解變形構(gòu)造基本不等式,從而求出最小值.試題解析:由得,則當(dāng)且僅當(dāng)時,上式取“=”,所以.考點:基本不等式;構(gòu)造思想和發(fā)散性思維.21、(1)見解析(2)【解析】
(1)由,,結(jié)合面面平行判定定理可證得平面平面,根據(jù)面面平行的性質(zhì)證得結(jié)論;(2)連接交于點,連接,利用線面垂直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 未來學(xué)習(xí)模式基于網(wǎng)絡(luò)教育平臺的思考
- 現(xiàn)代辦公空間中的綠色環(huán)保用品設(shè)計思考
- 2024年四年級品德與社會上冊 第三單元 生活在這里真好 第11課《我家來了新鄰居》說課稿 粵教版001
- 2024-2025學(xué)年高中物理 第十二章 機(jī)械波 4 波的衍射和干涉說課稿4 新人教版選修3-4001
- Module 1 Unit 1 She's a nice teacher(說課稿)-2023-2024學(xué)年外研版(三起)英語四年級下冊
- 2023九年級化學(xué)上冊 第一章 大家都來學(xué)化學(xué)1.2 化學(xué)實驗室之旅說課稿(新版)粵教版001
- 2025農(nóng)村養(yǎng)殖場場地租地合同
- 2025國際專利技術(shù)許可合同模板版
- Unit 5 Nature and Culture(說課稿)2023-2024學(xué)年人教新起點版英語六年級下冊
- 2025辦公家具租賃合同
- 八年級下冊歷史思維導(dǎo)圖
- 電動汽車用驅(qū)動電機(jī)系統(tǒng)-編制說明
- 江蘇卷2024年高三3月份模擬考試化學(xué)試題含解析
- (正式版)JTT 1497-2024 公路橋梁塔柱施工平臺及通道安全技術(shù)要求
- 醫(yī)療器械物價收費申請流程
- 招聘專員轉(zhuǎn)正述職報告
- “一帶一路”背景下的西安市文化旅游外宣翻譯研究-基于生態(tài)翻譯學(xué)理論
- 2024年江蘇省昆山市六校中考聯(lián)考(一模)化學(xué)試題
- 大學(xué)生文學(xué)常識知識競賽考試題庫500題(含答案)
- 國家電網(wǎng)智能化規(guī)劃總報告
- 邢臺市橋西區(qū)2024年事業(yè)單位考試《公共基礎(chǔ)知識》全真模擬試題含解析
評論
0/150
提交評論