基于深度學(xué)習(xí)的無(wú)相位電磁反演方法研究_第1頁(yè)
基于深度學(xué)習(xí)的無(wú)相位電磁反演方法研究_第2頁(yè)
基于深度學(xué)習(xí)的無(wú)相位電磁反演方法研究_第3頁(yè)
基于深度學(xué)習(xí)的無(wú)相位電磁反演方法研究_第4頁(yè)
基于深度學(xué)習(xí)的無(wú)相位電磁反演方法研究_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

基于深度學(xué)習(xí)的無(wú)相位電磁反演方法研究基于深度學(xué)習(xí)的無(wú)相位電磁反演方法研究

摘要:電磁反演技術(shù)在資源勘探、地球內(nèi)部結(jié)構(gòu)探測(cè)與非破壞性檢測(cè)等領(lǐng)域有著廣泛的應(yīng)用。無(wú)相位電磁反演方法是一種可以實(shí)現(xiàn)全角度反演的技術(shù),具有非常好的穩(wěn)定性和魯棒性,但是其對(duì)相位的要求比較高,對(duì)數(shù)據(jù)采集條件有著較高的要求限制。基于深度學(xué)習(xí)的無(wú)相位電磁反演方法采用了深度神經(jīng)網(wǎng)絡(luò)來(lái)學(xué)習(xí)數(shù)據(jù)的復(fù)雜非線(xiàn)性映射關(guān)系,能夠有效地解決相位信息缺失的問(wèn)題,提高了反演方法的穩(wěn)定性和可靠性。本文基于深度學(xué)習(xí)的無(wú)相位電磁反演方法進(jìn)行了深入研究,設(shè)計(jì)了深度卷積神經(jīng)網(wǎng)絡(luò)模型,并通過(guò)模擬實(shí)驗(yàn)和實(shí)際數(shù)據(jù)反演應(yīng)用進(jìn)行了驗(yàn)證。結(jié)果表明,本文提出的方法在處理相位信息缺失的同時(shí),不僅提高了反演的穩(wěn)定性和可靠性,而且對(duì)數(shù)據(jù)采集條件的要求也得到了顯著降低。

關(guān)鍵詞:電磁反演;無(wú)相位反演;深度學(xué)習(xí);深度卷積神經(jīng)網(wǎng)絡(luò);穩(wěn)定性

Abstract:Electromagneticinversiontechnologyhasbeenwidelyusedinresourceexploration,Earth'sinteriorstructuredetectionandnon-destructivetesting.Phaselesselectromagneticinversionmethodisatechnologythatcanachievefull-angleinversion,andhasexcellentstabilityandrobustness,butithashighrequirementsforphaseanddataacquisitionconditions.Basedondeeplearning,thephaselesselectromagneticinversionmethodusesdeepneuralnetworkstolearnthecomplexnonlinearmappingrelationshipofdata,whichcaneffectivelysolvetheproblemofphaseinformationlossandimprovethestabilityandreliabilityoftheinversionmethod.Inthispaper,thephaselesselectromagneticinversionmethodbasedondeeplearningisdeeplystudied,andadeepconvolutionalneuralnetworkmodelisdesigned,whichisverifiedthroughsimulationexperimentsandactualdatainversionapplications.Theresultsshowthattheproposedmethodnotonlyimprovesthestabilityandreliabilityoftheinversionwhiledealingwithphaseinformationloss,butalsosignificantlyreducestherequirementsfordataacquisitionconditions.

Keywords:electromagneticinversion;phaselessinversion;deeplearning;deepconvolutionalneuralnetwork;stabilitElectromagneticinversionisanimportanttoolforgeophysicalexploration,whichaimstorecoverthesubsurfacephysicalpropertiesbasedonthemeasuredelectromagneticfields.However,inmanypracticalsituations,onlytheamplitudeoftheelectromagneticfieldscanbemeasured,whilethephaseinformationislost.Thisso-calledphaselessinversionproblemisill-posedandchallengingtosolve,whichgreatlylimitstheaccuracyandapplicabilityofelectromagneticinversion.

Totacklethisproblem,adeepconvolutionalneuralnetwork(CNN)modelisproposedinthisstudy.CNNisapowerfuldeeplearningtechniquethatcanautomaticallylearncomplexfeaturerepresentationsfrominputdata,whichhasshownremarkablesuccessinvariousimageandsignalprocessingtasks.TheproposedCNNmodelisspecificallydesignedforphaselesselectromagneticinversion,whichtakestheamplitudeofthemeasuredelectromagneticfieldsasinputandoutputsthecorrespondingsubsurfacephysicalproperties.

TheproposedCNNmodelistrainedusingsimulateddatawithknowngroundtruth,andthenverifiedthroughbothsimulationexperimentsandactualdatainversionapplications.Theresultsshowthattheproposedmethodcansignificantlyimprovethestabilityandreliabilityoftheinversionwhiledealingwithphaseinformationloss,andcanachievehighaccuracyandrobustnessevenundernoisyandincompletedata.Moreover,theproposedmethodcangreatlyreducetherequirementsfordataacquisitionconditions,whichcansavetimeandcostinpracticalapplications.

Insummary,theproposeddeepCNNmodelprovidesapromisingsolutiontothephaselesselectromagneticinversionproblem,whichcangreatlyenhancetheaccuracyandapplicabilityofgeophysicalexploration.FutureresearchcanfurtherexplorethepotentialofdeeplearningtechniquesinelectromagneticinversionandotherrelatedfieldsFutureresearchinthefieldofelectromagneticinversioncanfocusonseveralareasthathavethepotentialtoimprovetheaccuracyandefficiencyoftheproposeddeeplearningmethod.OnepossibledirectionistoincorporatemorecomplexmodelingtechniquesandadvancedalgorithmstofurtheroptimizetheperformanceoftheCNNmodel.Forinstance,theuseofdifferentactivationfunctionsorlossfunctionsmayleadtobetterresultsinsomecases.Additionally,theincorporationofmorepriorinformationorconstraints,suchasthesmoothnessorsparsityofthesolution,canbeexplored.

Anotherareaworthexploringistheapplicationoftheproposedmethodtoothergeophysicalexplorationtechniques,suchasseismicandgravitysurveys.Whilethefocusofthisstudywasontheelectromagneticinversionproblem,thedeepCNNapproachcanbeadaptedtoothergeophysicalfieldswithphaselessinversionproblems.Additionally,theproposedmethodcanbeappliedtoreal-worlddatasetstovalidateitseffectivenessinpracticalapplications.

Furthermore,thedevelopmentofhardwareandsoftwareinfrastructuretosupportdeeplearningalgorithmscanalsofacilitatetheuseoftheproposedmethodinpractice.Specifically,theuseofhigh-performancecomputingsystemsandparallelprocessingtechniquescangreatlyacceleratethecomputationaltimerequiredfortheCNNmodel.Additionally,thedevelopmentofuser-friendlysoftwareinterfacescanenablenon-expertstoapplythedeepCNNmethodtotheirowngeophysicaldatasets.

Finally,theintegrationoftheproposeddeeplearningmethodwithotherexplorationtools,suchastraditionalinversionmethodsorforwardmodelingtechniques,canprovideamorecomprehensiveandaccuratesolutiontogeophysicalexplorationproblems.Thecombinationofdifferentmethodscanexploitthestrengthsofeachapproachandovercomethelimitationsofindividualmethods.Therefore,futureresearchcaninvestigatethepotentialofcombiningdeeplearningwithothergeophysicalexplorationmethodstoimprovetheaccuracyandefficiencyoftheinversionprocess.

Inconclusion,theproposeddeepCNNmethodrepresentsapromisingapproachtosolvingthephaselesselectromagneticinversionproblemingeophysicalexploration.Thedevelopmentofmoreadvanceddeeplearningtechniques,aswellastheirintegrationwithotherexplorationmethods,canfurtherenhancetheaccuracyandpracticalapplicabilityofthemethod.Overall,theemergingfieldofdeeplearninghasthepotentialtorevolutionizegeophysicalexplorationandbenefitscientificresearchandindustrypracticesinmanywaysDeeplearninghasshowngreatpotentialinmanyfields,includinggeophysicalexploration.Oneofthemajoradvantagesofdeeplearningisitsabilitytolearncomplexpatternsandfeaturesfromlargedatasets.Thiscanbeparticularlyusefulingeophysicalexploration,wheretheinterpretationofdataishighlydependentontheexpertiseandexperienceoftheinterpreter.

Oneofthechallengesingeophysicalexplorationistheinversionproblem,wherethegoalistorecoverthesubsurfacepropertiesfromtheobservedgeophysicaldata.Thephaselesselectromagneticinversionproblemisaparticularinstanceofthisproblem,whereonlytheamplitudeofthescatteredelectromagneticfieldcanbemeasured,andthephaseinformationislost.Thisproblemcanbedifficulttosolve,andtraditionalinversionmethodscanbecomputationallyexpensiveandmaynotalwaysproducereliableresults.

Thehodmethodhasshownpromiseinsolvingthephaselesselectromagneticinversionproblem.Themethodusesadeepneuralnetworktopredictthephaseofthescatteredfieldgiventheamplitudeofthefieldandthesubsurfaceparameters.Thenetworkistrainedusingalargedatasetofsyntheticdata,andtheaccuracyoftheinversionisevaluatedusingaseparatetestdataset.

Thehodmethodhasseveraladvantagesovertraditionalinversionmethods.First,itcanbemuchfasterthantraditionalmethods,astheinversioncanbeperformedinamatterofsecondsonatypicalcomputer.Second,themethodishighlyscalable,asitcanbeappliedtolargedatasetsandcaneasilyincorporateadditionaldatasources,suchasseismicorwelldata.Finally,themethodishighlyinterpretable,astheneuralnetworkcanprovideinsightsintothesubsurfacepropertiesandtherelationshipbetweenthedataandthemodelparameters.

However,therearealsochallengesassociatedwiththehodmethod.Oneofthemainchallengesistheneedforlargeamountsoftrainingdata.Theneuralnetworkrequiresalargeamountofsyntheticdatatolearntherelationshipbetweentheamplitudeofthefieldandthesubsurfaceparameters.Thisdatacanbegeneratedusingnumericalsimulations,butthesimulationscanbecomputationallyexpensiveandtime-consuming.

Anotherchallengeisthepotentialforoverfitting.Theneuralnetworkcaneasilymemorizethetrainingdataandproduceoverlycomplexmodelsthatdonotgeneralizewelltonewdata.Toaddressthischallenge,techniquessuchasregularizationandcross-validationcanbeusedtoensurethatthemodelisnotoverfittingthetrainingdata.

Despitethese

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論