基于神經(jīng)網(wǎng)絡(luò)的抗彎曲低損耗光纖設(shè)計(jì)及其布里淵散射特性研究_第1頁
基于神經(jīng)網(wǎng)絡(luò)的抗彎曲低損耗光纖設(shè)計(jì)及其布里淵散射特性研究_第2頁
基于神經(jīng)網(wǎng)絡(luò)的抗彎曲低損耗光纖設(shè)計(jì)及其布里淵散射特性研究_第3頁
基于神經(jīng)網(wǎng)絡(luò)的抗彎曲低損耗光纖設(shè)計(jì)及其布里淵散射特性研究_第4頁
基于神經(jīng)網(wǎng)絡(luò)的抗彎曲低損耗光纖設(shè)計(jì)及其布里淵散射特性研究_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

基于神經(jīng)網(wǎng)絡(luò)的抗彎曲低損耗光纖設(shè)計(jì)及其布里淵散射特性研究基于神經(jīng)網(wǎng)絡(luò)的抗彎曲低損耗光纖設(shè)計(jì)及其布里淵散射特性研究

摘要:隨著信息傳輸量的迅速增長(zhǎng),光纖通信系統(tǒng)的需求也愈加突出。然而,在實(shí)際應(yīng)用中,光纖由于外界因素的影響,比如彎曲、壓力等,容易引起光信號(hào)傳輸?shù)膿p耗和失真,進(jìn)而降低通信質(zhì)量。因此,本文提出一種基于神經(jīng)網(wǎng)絡(luò)的抗彎曲低損耗光纖設(shè)計(jì)方法,并探究其布里淵散射特性。該方法采用神經(jīng)網(wǎng)絡(luò)自適應(yīng)調(diào)整光纖傳輸時(shí)受到的彎曲影響,使其具備更好的抗彎曲能力和低損耗。同時(shí),通過仿真實(shí)驗(yàn)研究光纖在不同彎曲半徑下的布里淵散射特性,并提出了優(yōu)化方案,從而進(jìn)一步提升光纖的通信性能。實(shí)驗(yàn)結(jié)果表明,該光纖具有較高的信號(hào)傳輸質(zhì)量和穩(wěn)定性,并可在實(shí)際通信中得到廣泛應(yīng)用。

關(guān)鍵詞:光纖通信;神經(jīng)網(wǎng)絡(luò);抗彎曲能力;低損耗;布里淵散射

Abstract:Withtherapidgrowthofinformationtransmission,thedemandforfiberopticcommunicationsystemsisalsobecomingincreasinglyprominent.However,inpracticalapplications,fiberopticiseasilyaffectedbyexternalfactorssuchasbendingandpressure,whichcancausesignaltransmissionlossesanddistortion,therebyreducingcommunicationquality.Therefore,thispaperproposesafiberopticdesignmethodbasedonneuralnetworkthatcanresistbendingandlowloss,andexploresitsBrillouinscatteringcharacteristics.Thismethodusesneuralnetworktoadaptivelyadjustthebendingeffectsonfiberoptictransmission,makingitmoreresistanttobendingandlowloss.Atthesametime,thefiberoptic'sBrillouinscatteringcharacteristicsarestudiedthroughsimulationexperimentsatdifferentbendingradii,andoptimizationsolutionsareproposedtofurtherimprovethecommunicationperformanceoffiberoptic.Theexperimentalresultsshowthatthisfiberoptichashighsignaltransmissionqualityandstability,andcanbewidelyusedinpracticalcommunication.

Keywords:fiberopticcommunication;neuralnetwork;resistancetobending;lowloss;BrillouinscatteringFiberopticcommunicationhasbecomeanessentialtoolinmoderncommunicationnetworksduetoitshighbandwidthandlowsignalloss.Oneofthecriticalfactorsthataffecttheperformanceoffiberopticcommunicationisthefiberoptic'sresistancetobending.Thebendingofthefiberopticcanresultinhighsignalattenuation,leadingtoadecreaseinthesignalqualityandstabilityofthecommunicationnetwork.

Toimprovetheresistancetobendingofthefiberoptic,researchershaveconductednumerousstudiesandproposedseveralsolutions.OneoftheeffectivemethodsistooptimizetheBrillouinscatteringcharacteristicsofthefiberoptic.Brillouinscatteringisaphenomenonthatoccursinopticalfiber,wherethescatteredlightinteractswiththeacousticphononsinthefiber,resultinginashiftinthefrequencyofthescatteredlight.Thisshiftcanbeusedtomeasurethetemperatureandstraininthefiberoptic.

Throughsimulationexperiments,theBrillouinscatteringcharacteristicsofthefiberopticatdifferentbendingradiiarestudied.TheresultsshowthattheBrillouinshiftandlinewidthofthefiberopticaresignificantlyaffectedbythebendingradius.Toimprovethebendingresistanceofthefiberoptic,theresearcherssuggestoptimizingtheBrillouinscatteringcharacteristicsbyadjustingthefiberoptic'sparameters,suchasitscoresizeanddopantconcentration.

Furthermore,aneuralnetwork-basedapproachisalsoproposedtoenhancethefiberoptic'sresistancetobending.TheneuralnetworkistrainedusingtheexperimentaldatatopredicttheBrillouinshiftandlinewidthofthefiberopticfordifferentbendingradii.Byincorporatingtheneuralnetworkintothecommunicationsystem,thefiberopticcanadapttodifferentbendingradii,ensuringhighsignaltransmissionqualityandstability.

Inconclusion,theresistancetobendingofthefiberopticisacrucialfactorfortheperformanceoffiberopticcommunicationnetworks.Throughsimulationexperimentsandoptimizationsolutions,theBrillouinscatteringcharacteristicsofthefiberopticcanbeimproved,resultinginhighsignaltransmissionqualityandstability.Theproposedneuralnetwork-basedapproachcanfurtherenhancethefiberoptic'sresistancetobending,ensuringefficientandreliablecommunicationFiberopticcommunicationnetworkshaverevolutionizedthewaywecommunicateandshareinformation.Theuseofopticalfibershasmadeitpossibletotransmitvastamountsofdataathighspeeds,overlongdistancesandwithminimallosses.

However,theperformanceoffiberopticsystemscanbesignificantlyaffectedbyexternalfactorssuchastemperatureandmechanicalstress.Oneofthemostcriticalfactorsaffectingtheperformanceoffiberopticcablesistheirresistancetobending.

Bendingcausesthefiberopticcabletolosesomeofitslightcarryingcapacity,leadingtosignallossanddistortion.Thebending-inducedsignaldegradationcansignificantlyreducetheefficiencyandreliabilityofthecommunicationsystems.

Therefore,itisessentialtodevelopapproachestoenhancethefiberoptic'sresistancetobending.OneofthemethodsthathavebeenusedtoovercomethischallengeisBrillouinscattering.

Brillouinscatteringisaphenomenonthatoccurswhenlightinteractswiththeacousticwaveswithinafiberopticcable.Theacousticwavesgenerateashiftintheopticalfrequency,whichcanbeusedtodeterminethefiber'smechanicalproperties.

Throughsimulationexperimentsandoptimizationsolutions,theBrillouinscatteringcharacteristicsofafiberopticcablecanbeanalyzedandimproved.Thisapproachcansignificantlyenhancethefiber'sresistancetobending,resultinginhighsignaltransmissionqualityandstability.

Recently,researchershaveproposedusingmachinelearningalgorithms,specificallyneuralnetworks,toimprovetheresistanceoffiberopticcablestobending.Neuralnetworksareatypeofmachinelearningalgorithmthatcanlearnfromlargeamountsofdataandidentifypatternsandcorrelations.

Byanalyzinglargedatasetsoffiberopticcablecharacteristicsandtheirbendingbehaviors,neuralnetworkscanlearntopredictthefiber'sresistancetobendingaccurately.Thisapproachcanbeusedtooptimizethefiber'sdesignandcomposition,resultinginimprovedresistancetobendingandenhancedcommunicationsystemperformance.

Inconclusion,theresistancetobendingisacriticalfactorfortheperformanceoffiberopticcommunicationnetworks.UsingtheBrillouinscatteringapproachandmachinelearningalgorithms,wecananalyzeandoptimizethefiber'scharacteristicstoenhanceitsresistancetobending.Improvedresistancetobendingensuresefficientandreliablecommunication,criticalformoderncommunicationsystemsFurthermore,theroleoffiberopticsensorshasbeengainingpopularityinvariousfieldssuchasstructuralhealthmonitoring,medicaldiagnosis,andenvironmentalmonitoring.Thesesensorsrelyonthebendingofthefibertodetectchangesinparameterssuchastemperature,pressure,andstrain.Therefore,enhancingtheresistancetobendingofthefiberopticsensoriscrucialtoensureitsaccuracyandreliability.

Apartfromthefiber'smaterialcharacteristics,themanufacturingprocessalsoplaysasignificantroleindeterminingitsresistancetobending.Theprocessinvolvesseveralstepssuchaspreformfabrication,drawingofthefiber,andcoating.Eachofthesestepscanaffectthefiber'smicrostructure,whichinturnaffectsitsproperties.Forinstance,excessivetensionduringthedrawingprocesscanintroducedefectsinthefiber,reducingitsbendingresistance.

Toimprovethemanufacturingprocessandoptimizethefiber'sproperties,researchershavebeenusingvarioustechniquessuchasnumericalsimulationsandexperimentalcharacterization.Numericalsimulationsinvolveusingcomputermodelstosimulatethefiber'sbehaviorunderdifferentconditions,suchasbendingandtemperaturechanges.Thesesimulationshelpidentifythecriticalfactorsthataffectthefiber'sperformanceandoptimizethemanufacturingprocess.

Experimentalcharacterizationinvolvesanalyzingthefiber'spropertiesundervariousconditions,suchasmeasuringitsbendingstiffnessandstress-strainbehavior.Theseexperimentshelpvalidatethenumericalsimulationsandprovideadditionalinsightsintothefiber'sbehavior.

Inconclusion,theresistancetobendingisacriticalfactorindeterminingtheperformance

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論