新疆生產(chǎn)建設兵團五校2022-2023學年數(shù)學高一第二學期期末綜合測試試題含解析_第1頁
新疆生產(chǎn)建設兵團五校2022-2023學年數(shù)學高一第二學期期末綜合測試試題含解析_第2頁
新疆生產(chǎn)建設兵團五校2022-2023學年數(shù)學高一第二學期期末綜合測試試題含解析_第3頁
新疆生產(chǎn)建設兵團五校2022-2023學年數(shù)學高一第二學期期末綜合測試試題含解析_第4頁
新疆生產(chǎn)建設兵團五校2022-2023學年數(shù)學高一第二學期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知β為銳角,角α的終邊過點(3,4),sin(α+β)=,則cosβ=()A. B. C. D.或2.已知點、、在圓上運動,且,若點的坐標為,的最大值為()A. B. C. D.3.已知一組數(shù)1,1,2,3,5,8,,21,34,55,按這組數(shù)的規(guī)律,則應為()A.11 B.12 C.13 D.144.如圖,在平面四邊形ABCD中,若點E為邊CD上的動點,則的最小值為()A. B. C. D.5.己知關于的不等式解集為,則突數(shù)的取值范圍為()A. B.C. D.6.若點,直線過點且與線段相交,則的斜率的取值范圍是()A.或B.或C.D.7.已知的內(nèi)角、、的對邊分別為、、,邊上的高為,且,則的最大值是()A. B. C. D.8.不等式的解集為,則的值為(

)A. B.C. D.9.“”是“直線:與直線:垂直”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件10.若,滿足,則的最大值為().A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最大值為______.12.甲、乙兩名射擊運動員進行射擊比賽,甲的中靶概率為0.8,乙的中靶概率為0.7,現(xiàn)兩人各自獨立射擊一次,均中靶的概率為______.13.給出下列四個命題:①正切函數(shù)在定義域內(nèi)是增函數(shù);②若函數(shù),則對任意的實數(shù)都有;③函數(shù)的最小正周期是;④與的圖象相同.以上四個命題中正確的有_________(填寫所有正確命題的序號)14.平面四邊形中,,則=_______.15.已知函數(shù)的圖象如下,則的值為__________.16.函數(shù)y=tan三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,角所對的邊分別為,滿足(1)求的值;(2)若,求b的取值范圍.18.如圖,已知函數(shù),點分別是的圖像與軸、軸的交點,分別是的圖像上橫坐標為的兩點,軸,共線.(1)求的值;(2)若關于的方程在區(qū)間上恰有唯一實根,求實數(shù)的取值范圍.19.已知數(shù)列{an}中,a1=1且an﹣an﹣1=3×()n﹣2(n≥2,n∈N*).(1)求數(shù)列{an}的通項公式:(2)若對任意的n∈N*,不等式1≤man≤5恒成立,求實數(shù)m的取值范圍.20.已知數(shù)列的前項和,且,數(shù)列滿足:對于任意,有.(1)求數(shù)列的通項公式;(2)求數(shù)列的通項公式,若在數(shù)列的兩項之間都按照如下規(guī)則插入一些數(shù)后,構成新數(shù)列:和兩項之間插入個數(shù),使這個數(shù)構成等差數(shù)列,求;(3)若不等式成立的自然數(shù)恰有個,求正整數(shù)的值.21.某企業(yè)用180萬元購買一套新設備,該套設備預計平均每年能給企業(yè)帶來100萬元的收入,為了維護設備的正常運行,第一年需要各種維護費用10萬元,且從第二年開始,每年比上一年所需的維護費用要增加10萬元(1)求該設備給企業(yè)帶來的總利潤(萬元)與使用年數(shù)的函數(shù)關系;(2)試計算這套設備使用多少年,可使年平均利潤最大?年平均利潤最大為多少萬元?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

由題意利用任意角的三角函數(shù)的定義求得sinα和cosα,再利用同角三角函數(shù)的基本關系求得cos(α+β)的值,再利用兩角差的余弦公式求得cosβ=cos[(α+β)﹣α]的值.【詳解】β為銳角,角α的終邊過點(3,4),∴sinα,cosα,sin(α+β)sinα,∴α+β為鈍角,∴cos(α+β),則cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα??,故選B.【點睛】本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關系、兩角和差的余弦公式的應用,屬于基礎題.2、C【解析】

由題意可知為圓的一條直徑,由平面向量加法的平行四邊形法則可得(為坐標原點),然后利用平面向量模的三角不等式以及圓的幾何性質(zhì)可得出的最大值.【詳解】如下圖所示:,為圓的一條直徑,由平面向量加法的平行四邊形法則可得(為坐標原點),由平面向量模的三角不等式可得,當且僅當點的坐標為時,等號成立,因此,的最大值為.故選:C.【點睛】本題考查向量模的最值問題,涉及平面向量模的三角不等式以及圓的幾何性質(zhì)的應用,考查數(shù)形結(jié)合思想的應用,屬于中等題.3、C【解析】

易得從第三項開始數(shù)列的每項都為前兩項之和,再求解即可.【詳解】易得從第三項開始數(shù)列的每項都為前兩項之和,故.故選:C【點睛】該數(shù)列為“斐波那契數(shù)列”,從第三項開始數(shù)列的每項都為前兩項之和,屬于基礎題.4、A【解析】

分析:由題意可得為等腰三角形,為等邊三角形,把數(shù)量積分拆,設,數(shù)量積轉(zhuǎn)化為關于t的函數(shù),用函數(shù)可求得最小值。詳解:連接BD,取AD中點為O,可知為等腰三角形,而,所以為等邊三角形,。設=所以當時,上式取最小值,選A.點睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時利用向量共線轉(zhuǎn)化為函數(shù)求最值。5、C【解析】

利用絕對值的幾何意義求解,即表示數(shù)軸上與和-2的距離之和,其最小值為.【詳解】∵,∴由解集為,得,解得.故選C.【點睛】本題考查絕對值不等式,考查絕對值的性質(zhì),解題時可按絕對值定義去絕對值符號后再求解,也可應用絕對值的幾何意義求解.不等式解集為,可轉(zhuǎn)化為的最小值不小于1,這是解題關鍵.6、C【解析】試題分析:畫出三點坐標可知,兩個邊界值為和,數(shù)形結(jié)合可知為.考點:1.相交直線;2.數(shù)形結(jié)合的方法;7、C【解析】

由余弦定理化簡可得,利用三角形面積公式可得,解得,利用正弦函數(shù)的圖象和性質(zhì)即可得解其最大值.【詳解】由余弦定理可得:,故:,而,故,所以:.故選.【點睛】本題主要考查了余弦定理,三角形面積公式,正弦函數(shù)的圖象和性質(zhì)在解三角形中的綜合應用,考查了轉(zhuǎn)化思想,屬于中檔題.8、B【解析】

根據(jù)一元二次不等式解集與對應一元二次方程根的關系列方程組,解得a,c的值.【詳解】由題意得為方程兩根,所以,選B.【點睛】一元二次方程的根與對應一元二次不等式解集以及對應二次函數(shù)零點的關系,是數(shù)形結(jié)合思想,等價轉(zhuǎn)化思想的具體體現(xiàn),注意轉(zhuǎn)化時的等價性.9、A【解析】試題分析:由題意得,直線與直線垂直,則,解得或,所以“”是“直線與直線垂直”的充分不必要條件,故選A.考點:兩條直線的位置關系及充分不必要條件的判定.10、D【解析】作出不等式組,所表示的平面區(qū)域,如圖所示,當時,可行域為四邊形內(nèi)部,目標函數(shù)可化為,即,平移直線可知當直線經(jīng)過點時,直線的截距最大,從而最大,此時,,當時,可行域為三角形,目標函數(shù)可化為,即,平移直線可知當直線經(jīng)過點時,直線的截距最大,從而最大,,綜上,的最大值為.故選.點睛:利用線性規(guī)劃求最值的步驟:(1)在平面直角坐標系內(nèi)作出可行域.(2)考慮目標函數(shù)的幾何意義,將目標函數(shù)進行變形.常見的類型有截距型(型)、斜率型(型)和距離型(型).(3)確定最優(yōu)解:根據(jù)目標函數(shù)的類型,并結(jié)合可行域確定最優(yōu)解.(4)求最值:將最優(yōu)解代入目標函數(shù)即可求出最大值或最小值.注意解答本題時不要忽視斜率不存在的情形.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

設,,,則,,可得,再根據(jù)正弦函數(shù)的定義域和值域,求得函數(shù)的最值.【詳解】解:函數(shù),設,,則,,,,故當,即時,函數(shù),故故答案為:;【點睛】本題主要考查求函數(shù)的值域,正弦函數(shù)的定義域和值域,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于基礎題.12、0.56【解析】

根據(jù)在一次射擊中,甲、乙同時射中目標是相互獨立的,利用相互獨立事件的概率乘法公式,即可求解.【詳解】由題意,甲的中靶概率為0.8,乙的中靶概率為0.7,所以兩人均中靶的概率為,故答案為0.56【點睛】本題主要考查了相互獨立事件的概率乘法公式的應用,其中解答中合理利用相互獨立的概率乘法公式求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.13、②③④【解析】

①利用反例證明命題錯誤;②先判斷為其中一條對稱軸;③通過恒等變換化成;④對兩個解析式進行變形,得到定義域和對應關系均一樣.【詳解】對①,當,顯然,但,所以,不符合增函數(shù)的定義,故①錯;對②,當時,,所以為的一條對稱軸,當取,取時,顯然兩個數(shù)關于直線對稱,所以,即成立,故②對;對③,,,故③對;對④,因為,,兩個函數(shù)的定義域都是,解析式均為,所以函數(shù)圖象相同,故④對.綜上所述,故填:②③④.【點睛】本題對三角函數(shù)的定義域、值域、單調(diào)性、對稱性、周期性等知識進行綜合考查,求解過程中要注意數(shù)形結(jié)合思想的應用.14、【解析】

先求出,再求出,再利用余弦定理求出AD得解.【詳解】依題意得中,,故.在中,由正弦定理可知,,得.在中,因為,故.則.在中,由余弦定理可知,,即.得.【點睛】本題主要考查正弦定理余弦定理解三角形,意在考查學生對這些知識的理解掌握水平,屬于中檔題.15、【解析】

由函數(shù)的圖象的頂點坐標求出,由半個周期求出,最后將特殊點的坐標求代入解析式,即可求得的值.【詳解】解:由圖象可得,,得.,將點代入函數(shù)解析式,得,,,又因為,所以故答案為:【點睛】本題考查由的部分圖象確定其解析式.(1)根據(jù)函數(shù)的最高點的坐標確定(2)根據(jù)函數(shù)零點的坐標確定函數(shù)的周期求(3)利用最值點的坐標同時求的取值,即可得到函數(shù)的解析式.16、{【解析】

解方程12【詳解】由題得12x+故答案為{x|x≠2kπ+【點睛】本題主要考查正切型函數(shù)的定義域的求法,意在考查學生對該知識的理解掌握水平,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)代入條件化簡得,再由同角三角函數(shù)基本關系求出;(2)利用余弦定理、,把表示成關于的二次函數(shù).【詳解】(1),,即,,,又,解得:.(2),可得,由余弦定理可得:,,所以b的取值范圍為.【點睛】對于運動變化問題,常用函數(shù)與方程的思想進行研究,所以自然而然想到構造以是關于或的函數(shù).18、(Ⅰ),(Ⅱ)或【解析】試題分析:解:(Ⅰ)建立,.(Ⅱ),結(jié)合圖象可知或.試題解析:解:(Ⅰ)①②解得,.(Ⅱ),,因為時,,由方程恰有唯一實根,結(jié)合圖象可知或.19、(1)an=3﹣2×()n﹣1(2){m|1≤m}【解析】

(1)由已知,根據(jù)遞推公式可得,,……,,所有式子累加可得;(2)在(1)得出的基礎之上解不等式可得實數(shù)的取值范圍.【詳解】(1)由已知,根據(jù)遞推公式可得an﹣an﹣1=3×()n﹣2,an﹣1﹣an﹣2=3×()n﹣3,…,a2﹣a1=3×()0,由累加法得,當n≥2時,an﹣a1=3×()0+3×()1+…+3×()n﹣2,代入a1=1得,n≥2時,an=11+2×(1﹣()n﹣1),又a1=1也滿足上式,故an=3﹣2×()n﹣1.(2)由1≤man≤5,得1≤man=m(3﹣2()n﹣1)≤5.因為3﹣2()n﹣1>0,所以,當n為奇數(shù)時,3﹣2()n﹣1∈[1,3);當n為偶數(shù)時,3﹣2()n﹣1∈(3,4],所以3﹣2()n﹣1最大值為4,最小值為1.對于任意的正整數(shù)n都有成立,所以1≤m.即所求實數(shù)m的取值范圍是{m|1≤m}.【點睛】本題主要考查數(shù)列的遞推公式知識和不等式的相關知識,式子繁瑣,易錯,屬于中檔題.20、(1);,;(3).【解析】

(1)令求出,然后令,由得出,兩式相減可得出數(shù)列是等比數(shù)列,確定該數(shù)列的首項和公比,即可求出數(shù)列的通項公式;(2)令可計算出,再令,由可得出,兩式相減求出,求出,再檢驗是否滿足的表達式,由此可得出數(shù)列的通項公式,求出,由,以及可得出的值;(3)化簡可得,分類討論,當、時,不等式成立,當時,,利用判斷數(shù)列的單調(diào)性,得出該數(shù)列的最大項,可知滿足不等式,且和不滿足該不等式,由此可得出實數(shù)的取值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論