![基于深度學(xué)習(xí)的輪對激光光條圖像修復(fù)研究_第1頁](http://file4.renrendoc.com/view/9b93d14007a68641d2d8e89e84c217a8/9b93d14007a68641d2d8e89e84c217a81.gif)
![基于深度學(xué)習(xí)的輪對激光光條圖像修復(fù)研究_第2頁](http://file4.renrendoc.com/view/9b93d14007a68641d2d8e89e84c217a8/9b93d14007a68641d2d8e89e84c217a82.gif)
![基于深度學(xué)習(xí)的輪對激光光條圖像修復(fù)研究_第3頁](http://file4.renrendoc.com/view/9b93d14007a68641d2d8e89e84c217a8/9b93d14007a68641d2d8e89e84c217a83.gif)
![基于深度學(xué)習(xí)的輪對激光光條圖像修復(fù)研究_第4頁](http://file4.renrendoc.com/view/9b93d14007a68641d2d8e89e84c217a8/9b93d14007a68641d2d8e89e84c217a84.gif)
![基于深度學(xué)習(xí)的輪對激光光條圖像修復(fù)研究_第5頁](http://file4.renrendoc.com/view/9b93d14007a68641d2d8e89e84c217a8/9b93d14007a68641d2d8e89e84c217a85.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
基于深度學(xué)習(xí)的輪對激光光條圖像修復(fù)研究基于深度學(xué)習(xí)的輪對激光光條圖像修復(fù)研究
摘要:
輪對激光光條圖像的質(zhì)量直接影響到鐵路運輸?shù)陌踩托剩虼藢ζ溥M(jìn)行修復(fù)具有重要意義。本文提出了一種基于深度學(xué)習(xí)的輪對激光光條圖像修復(fù)方法。首先,我們收集了大量原始和瑕疵圖像,用于構(gòu)建訓(xùn)練和測試數(shù)據(jù)集。接著,利用卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行圖像修復(fù),該網(wǎng)絡(luò)由編碼器、解碼器和反卷積操作組成。在訓(xùn)練階段,我們采用自編碼器和殘差學(xué)習(xí)以增強(qiáng)網(wǎng)絡(luò)的修復(fù)效果。在測試階段,根據(jù)網(wǎng)絡(luò)的輸出進(jìn)行自適應(yīng)像素分類,通過分別對不同的像素分配優(yōu)先級來保證修復(fù)效果優(yōu)良。實驗結(jié)果表明,本文提出的方法可以有效地修復(fù)輪對激光光條圖像,提高了圖像質(zhì)量及細(xì)節(jié)信息的恢復(fù)能力。
關(guān)鍵詞:輪對激光光條圖像,深度學(xué)習(xí),自編碼器,殘差學(xué)習(xí),自適應(yīng)像素分類
Abstract:
Thequalityofthewheel-raillaserstripeimagedirectlyaffectsthesafetyandefficiencyofrailwaytransportation.Therefore,itsrepairisofgreatsignificance.Inthispaper,weproposeadeeplearningbasedmethodforrepairingwheel-raillaserstripeimages.Firstly,wecollectedalargenumberoforiginalanddefectiveimagestoconstructtrainingandtestingdatasets.Then,aconvolutionalneuralnetworkisusedforimagerestoration,whichconsistsofanencoder,adecoder,anddeconvolutionoperations.Inthetrainingphase,weusetheautoencoderandresiduallearningtoenhancetherestorationeffectofthenetwork.Inthetestingphase,weadaptivelyclassifypixelsbasedonthenetworkoutput,andassigndifferentprioritiestodifferentpixelstoensuretherestorationeffectisgood.Experimentalresultsshowthattheproposedmethodcaneffectivelyrepairwheel-raillaserstripeimagesandimprovetheabilitytorestoreimagequalityanddetailinformation.
Keywords:wheel-raillaserstripeimage,deeplearning,autoencoder,residuallearning,adaptivepixelclassificationRailwaytransportationplaysasignificantroleinmoderntransportinfrastructure,andthesafetyandreliabilityofrailwaysystemsareessentialfactors.Onekeycomponentofrailwaysystemsisthewheel-railsystem,andthemonitoringofthewheel-railinterfaceisbecomingincreasinglyimportant.Laser-basedopticalmeasurementtechnologyhasbeenwidelyusedtomonitorthegeometryofrailtracks,includingthewheel-railcontactarea.Wheel-raillaserstripeimagingtechnologycanbeusedtoextractthecontactgeometryinformation,andithasbeenappliedinmanyrailwayinspectionscenarios.
However,thewheel-raillaserstripeimagescanbeseriouslydegradedbyvariousfactors,includingenvironmentalchanges,sensornoise,andotherartifacts.Thedegradedimagescanaffecttheaccuracyandreliabilityofrailmonitoringandcanresultinmisleadingresults,whichcouldimpactthesafetyoftherailwaysystem.Therefore,itiscrucialtodevelopeffectivemethodsforrestoringthedegradedwheel-raillaserstripeimages.
Inrecentyears,deeplearningmethodshaveachievedremarkablesuccessinvariousimagerestorationtasks,includingimagedenoising,super-resolution,andimageinpainting.Inthisstudy,weproposeanautoencoder-baseddeeplearningmethodforwheel-raillaserstripeimagerestoration.Inparticular,wedesignaresidualautoencodernetworkthatcaneffectivelycapturethecompleximagefeaturesandrestorethedegradedimagedetails.
Toovercomethelimitationsoftraditionaldeeplearningapproaches,weproposeanadaptivepixelclassificationschemetoprioritizetherestorationofdifferentimagepixels.Theproposedschemecanassignhigherprioritiestoimagepixelswithmoresignificantrestorationpotential,therebyensuringtherestorationqualityandretainingthecrucialinformationintheoriginalimage.
Experimentalresultsshowthattheproposedmethodcaneffectivelyrestorethedegradedwheel-raillaserstripeimagesandimprovetheimagequalityanddetailinformation.Ourapproachoutperformsotherstate-of-the-artimagerestorationmethodsintermsofrestorationaccuracyandcomputationalefficiency.Overall,ourproposedmethodcancontributetothesafeandreliableoperationofrailwaysystemsbyenhancingrailmonitoringaccuracyandreliabilityMoreover,theproposedmethodcanalsohavepotentialapplicationsinotherfields,suchasrobotics,manufacturing,andmedicalimaging,wherelaserstripeprojectioniscommonlyusedfor3Dsurfacemeasurementandinspection.Byrestoringthedegradedlaserstripeimages,ourapproachcanhelpimprovetheaccuracyandreliabilityofsurfacereconstructionanddefectdetection,whicharecriticalforqualitycontrolandproductevaluation.
Inadditiontotheproposedmethod,therearealsosomefutureresearchdirectionsthatcanbeexploredtofurtherimprovetheperformanceoflaserstripeimagerestoration.Forexample,incorporatingmorepriorknowledgeorconstraintsintotheimagerestorationprocess,suchasthegeometricstructureofthelaserstripeorthestatisticalcharacteristicsofthenoise,canhelpenhancetherestorationaccuracyandrobustness.Moreover,multi-viewormulti-frequencylaserstripeprojectioncanbeusedtoobtainmoreinformationaboutthesurfacetextureandshape,whichcanbeexploitedforbetterimagerestorationandfusion.
Overall,theproposedmethodpresentedinthispaperservesasapromisingsolutionforrestoringthedegradedwheel-raillaserstripeimages,whichcansignificantlybenefittherailwayindustrybyimprovingthesafety,efficiency,andreliabilityofrailmonitoringandmaintenance.TheproposedmethodcanalsohavebroaderapplicationsinotherfieldsthatinvolvelaserstripeprojectionandimagerestorationInadditiontotheapplicationsmentionedabove,theproposedmethodcanalsobeappliedtoothertypesoflaserstripeimages,suchasthoseproducedinmanufacturingandindustrialsettings.Forexample,laserstripesensorsarecommonlyusedin3Dscanningandmeasurement,wheretheycaptureobjectsurfaceinformationforinspectionandanalysis.However,thecapturedlaserstripeimagescanbeaffectedbyvariousfactorssuchasnoise,occlusion,andgeometricdistortion,whichcandegradethequalityoftheacquireddata.
Theproposedmethodcanbeadaptedtoaddressthesechallengesandenhancetheaccuracyandreliabilityof3Dmeasurementandinspection.Byeffectivelyremovingnoiseanddistortionfromthelaserstripeimages,theproposedmethodcanhelptoimprovetheprecisionandcompletenessofobjectsurfacereconstruction,whichiscriticalforqualitycontrolanddefectdetectioninmanufacturingandindustrialprocesses.
Moreover,theproposedmethodcanbeintegratedwithotherimageprocessingtechniques,suchasfeaturedetectionandtracking,toenablereal-timeanalysisandfeedbackindynamicenvironments.Forinstance,inroboticsandautomation,laserstripesensorscanbeusedtoguidethemotionandmanipulationofroboticarmsandtools.Theproposedmethodcanhelptoimprovetheaccuracyandrobustnessofthesensingandcontrolsystem,byprovidingreliableandaccuratefeedbackoftheobjectsurfacecharacteristics
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 南京江蘇南京師范大學(xué)食品與制藥工程學(xué)院招聘筆試歷年參考題庫附帶答案詳解
- 寵物領(lǐng)養(yǎng)后的教育考核試卷
- 信息技術(shù)在人力資源管理中的應(yīng)用考核試卷
- 電力設(shè)施故障預(yù)測與健康管理技術(shù)
- 地質(zhì)勘探地震勘探儀器在地震勘探與環(huán)境保護(hù)的可持續(xù)發(fā)展考核試卷
- 生物醫(yī)藥企業(yè)的品牌建設(shè)與營銷策略
- 監(jiān)理檢測設(shè)備租賃合同(2篇)
- 醫(yī)療器械在創(chuàng)傷急救中的應(yīng)用考核試卷
- 干部休養(yǎng)所節(jié)能減排與環(huán)境保護(hù)考核試卷
- 放射性廢物處理與處置的輻射防護(hù)優(yōu)化策略考核試卷
- 2024年全國統(tǒng)一高考英語試卷(新課標(biāo)Ⅰ卷)含答案
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識 CCAA年度確認(rèn) 試題與答案
- 2022屆“一本、二本臨界生”動員大會(2023.5)
- 肝臟炎性假瘤的影像學(xué)表現(xiàn)培訓(xùn)課件
- 國家行政機(jī)關(guān)公文格式課件
- 耐壓絕緣硅橡膠涂料噴涂作業(yè)指導(dǎo)書
- 小學(xué)《體育與健康》 人教版 三年級 乒乓球運動 -乒乓球介紹與球性教學(xué) 第一節(jié)課PPT 課件
- 急性心梗的護(hù)理業(yè)務(wù)學(xué)習(xí)課件
- 導(dǎo)向標(biāo)識系統(tǒng)設(shè)計(二)課件
- 聚焦:如何推進(jìn)教育治理體系和治理能力現(xiàn)代化
- 化工儀表自動化【第四章】自動控制儀表
評論
0/150
提交評論