




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
基于深度學(xué)習(xí)的輪對(duì)激光光條圖像修復(fù)研究基于深度學(xué)習(xí)的輪對(duì)激光光條圖像修復(fù)研究
摘要:
輪對(duì)激光光條圖像的質(zhì)量直接影響到鐵路運(yùn)輸?shù)陌踩托?,因此?duì)其進(jìn)行修復(fù)具有重要意義。本文提出了一種基于深度學(xué)習(xí)的輪對(duì)激光光條圖像修復(fù)方法。首先,我們收集了大量原始和瑕疵圖像,用于構(gòu)建訓(xùn)練和測(cè)試數(shù)據(jù)集。接著,利用卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行圖像修復(fù),該網(wǎng)絡(luò)由編碼器、解碼器和反卷積操作組成。在訓(xùn)練階段,我們采用自編碼器和殘差學(xué)習(xí)以增強(qiáng)網(wǎng)絡(luò)的修復(fù)效果。在測(cè)試階段,根據(jù)網(wǎng)絡(luò)的輸出進(jìn)行自適應(yīng)像素分類,通過分別對(duì)不同的像素分配優(yōu)先級(jí)來保證修復(fù)效果優(yōu)良。實(shí)驗(yàn)結(jié)果表明,本文提出的方法可以有效地修復(fù)輪對(duì)激光光條圖像,提高了圖像質(zhì)量及細(xì)節(jié)信息的恢復(fù)能力。
關(guān)鍵詞:輪對(duì)激光光條圖像,深度學(xué)習(xí),自編碼器,殘差學(xué)習(xí),自適應(yīng)像素分類
Abstract:
Thequalityofthewheel-raillaserstripeimagedirectlyaffectsthesafetyandefficiencyofrailwaytransportation.Therefore,itsrepairisofgreatsignificance.Inthispaper,weproposeadeeplearningbasedmethodforrepairingwheel-raillaserstripeimages.Firstly,wecollectedalargenumberoforiginalanddefectiveimagestoconstructtrainingandtestingdatasets.Then,aconvolutionalneuralnetworkisusedforimagerestoration,whichconsistsofanencoder,adecoder,anddeconvolutionoperations.Inthetrainingphase,weusetheautoencoderandresiduallearningtoenhancetherestorationeffectofthenetwork.Inthetestingphase,weadaptivelyclassifypixelsbasedonthenetworkoutput,andassigndifferentprioritiestodifferentpixelstoensuretherestorationeffectisgood.Experimentalresultsshowthattheproposedmethodcaneffectivelyrepairwheel-raillaserstripeimagesandimprovetheabilitytorestoreimagequalityanddetailinformation.
Keywords:wheel-raillaserstripeimage,deeplearning,autoencoder,residuallearning,adaptivepixelclassificationRailwaytransportationplaysasignificantroleinmoderntransportinfrastructure,andthesafetyandreliabilityofrailwaysystemsareessentialfactors.Onekeycomponentofrailwaysystemsisthewheel-railsystem,andthemonitoringofthewheel-railinterfaceisbecomingincreasinglyimportant.Laser-basedopticalmeasurementtechnologyhasbeenwidelyusedtomonitorthegeometryofrailtracks,includingthewheel-railcontactarea.Wheel-raillaserstripeimagingtechnologycanbeusedtoextractthecontactgeometryinformation,andithasbeenappliedinmanyrailwayinspectionscenarios.
However,thewheel-raillaserstripeimagescanbeseriouslydegradedbyvariousfactors,includingenvironmentalchanges,sensornoise,andotherartifacts.Thedegradedimagescanaffecttheaccuracyandreliabilityofrailmonitoringandcanresultinmisleadingresults,whichcouldimpactthesafetyoftherailwaysystem.Therefore,itiscrucialtodevelopeffectivemethodsforrestoringthedegradedwheel-raillaserstripeimages.
Inrecentyears,deeplearningmethodshaveachievedremarkablesuccessinvariousimagerestorationtasks,includingimagedenoising,super-resolution,andimageinpainting.Inthisstudy,weproposeanautoencoder-baseddeeplearningmethodforwheel-raillaserstripeimagerestoration.Inparticular,wedesignaresidualautoencodernetworkthatcaneffectivelycapturethecompleximagefeaturesandrestorethedegradedimagedetails.
Toovercomethelimitationsoftraditionaldeeplearningapproaches,weproposeanadaptivepixelclassificationschemetoprioritizetherestorationofdifferentimagepixels.Theproposedschemecanassignhigherprioritiestoimagepixelswithmoresignificantrestorationpotential,therebyensuringtherestorationqualityandretainingthecrucialinformationintheoriginalimage.
Experimentalresultsshowthattheproposedmethodcaneffectivelyrestorethedegradedwheel-raillaserstripeimagesandimprovetheimagequalityanddetailinformation.Ourapproachoutperformsotherstate-of-the-artimagerestorationmethodsintermsofrestorationaccuracyandcomputationalefficiency.Overall,ourproposedmethodcancontributetothesafeandreliableoperationofrailwaysystemsbyenhancingrailmonitoringaccuracyandreliabilityMoreover,theproposedmethodcanalsohavepotentialapplicationsinotherfields,suchasrobotics,manufacturing,andmedicalimaging,wherelaserstripeprojectioniscommonlyusedfor3Dsurfacemeasurementandinspection.Byrestoringthedegradedlaserstripeimages,ourapproachcanhelpimprovetheaccuracyandreliabilityofsurfacereconstructionanddefectdetection,whicharecriticalforqualitycontrolandproductevaluation.
Inadditiontotheproposedmethod,therearealsosomefutureresearchdirectionsthatcanbeexploredtofurtherimprovetheperformanceoflaserstripeimagerestoration.Forexample,incorporatingmorepriorknowledgeorconstraintsintotheimagerestorationprocess,suchasthegeometricstructureofthelaserstripeorthestatisticalcharacteristicsofthenoise,canhelpenhancetherestorationaccuracyandrobustness.Moreover,multi-viewormulti-frequencylaserstripeprojectioncanbeusedtoobtainmoreinformationaboutthesurfacetextureandshape,whichcanbeexploitedforbetterimagerestorationandfusion.
Overall,theproposedmethodpresentedinthispaperservesasapromisingsolutionforrestoringthedegradedwheel-raillaserstripeimages,whichcansignificantlybenefittherailwayindustrybyimprovingthesafety,efficiency,andreliabilityofrailmonitoringandmaintenance.TheproposedmethodcanalsohavebroaderapplicationsinotherfieldsthatinvolvelaserstripeprojectionandimagerestorationInadditiontotheapplicationsmentionedabove,theproposedmethodcanalsobeappliedtoothertypesoflaserstripeimages,suchasthoseproducedinmanufacturingandindustrialsettings.Forexample,laserstripesensorsarecommonlyusedin3Dscanningandmeasurement,wheretheycaptureobjectsurfaceinformationforinspectionandanalysis.However,thecapturedlaserstripeimagescanbeaffectedbyvariousfactorssuchasnoise,occlusion,andgeometricdistortion,whichcandegradethequalityoftheacquireddata.
Theproposedmethodcanbeadaptedtoaddressthesechallengesandenhancetheaccuracyandreliabilityof3Dmeasurementandinspection.Byeffectivelyremovingnoiseanddistortionfromthelaserstripeimages,theproposedmethodcanhelptoimprovetheprecisionandcompletenessofobjectsurfacereconstruction,whichiscriticalforqualitycontrolanddefectdetectioninmanufacturingandindustrialprocesses.
Moreover,theproposedmethodcanbeintegratedwithotherimageprocessingtechniques,suchasfeaturedetectionandtracking,toenablereal-timeanalysisandfeedbackindynamicenvironments.Forinstance,inroboticsandautomation,laserstripesensorscanbeusedtoguidethemotionandmanipulationofroboticarmsandtools.Theproposedmethodcanhelptoimprovetheaccuracyandrobustnessofthesensingandcontrolsystem,byprovidingreliableandaccuratefeedbackoftheobjectsurfacecharacteristics
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 計(jì)算機(jī)輸入輸出2025年考試試題及答案
- 2025年軟考備考的高效秘笈試題及答案
- 生活習(xí)慣養(yǎng)成小班教育計(jì)劃要點(diǎn)
- 現(xiàn)代化開發(fā)流程的優(yōu)化策略試題及答案
- 2025年軟考服務(wù)導(dǎo)向架構(gòu)試題及答案
- 倉(cāng)庫(kù)應(yīng)對(duì)市場(chǎng)變化的靈活策略計(jì)劃
- 云計(jì)算平臺(tái)的服務(wù)模型解析試題及答案
- 河北省石家莊市八校聯(lián)考2025年七下數(shù)學(xué)期末經(jīng)典模擬試題含解析
- 保密資質(zhì)認(rèn)定管理辦法
- 2025屆合肥蜀山區(qū)五校聯(lián)考八年級(jí)數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析
- 【滬科版】七年級(jí)數(shù)學(xué)下冊(cè)第六章單元測(cè)試卷(一)含答案與解析
- 廣東省廣州市2025屆高三二模數(shù)學(xué)試卷(原卷版)
- 濟(jì)南幼兒師范高等??茖W(xué)校招聘筆試真題2024
- 2025全國(guó)保密教育線上培訓(xùn)考試試題庫(kù)及答案
- 院感感染培訓(xùn)試題及答案
- 2024年呼和浩特市玉泉區(qū)消防救援大隊(duì)招聘政府專職消防員真題
- 2025年中考語文文言文復(fù)習(xí):神話寓言 練習(xí)題(含答案解析)
- 管理股協(xié)議書范本
- 《醫(yī)療機(jī)構(gòu)節(jié)能減排教育》課件
- 大學(xué)計(jì)算機(jī)基礎(chǔ) 第6章算法與數(shù)據(jù)結(jié)構(gòu)基礎(chǔ)學(xué)習(xí)資料
- GA/T 751-2024公安視頻圖像屏幕顯示信息疊加規(guī)范
評(píng)論
0/150
提交評(píng)論