2021-2022學年安徽省亳州市蒙城縣高一年級下冊學期期末數(shù)學試題【含答案】_第1頁
2021-2022學年安徽省亳州市蒙城縣高一年級下冊學期期末數(shù)學試題【含答案】_第2頁
2021-2022學年安徽省亳州市蒙城縣高一年級下冊學期期末數(shù)學試題【含答案】_第3頁
2021-2022學年安徽省亳州市蒙城縣高一年級下冊學期期末數(shù)學試題【含答案】_第4頁
2021-2022學年安徽省亳州市蒙城縣高一年級下冊學期期末數(shù)學試題【含答案】_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022學年安徽省亳州市蒙城縣高一下學期期末數(shù)學試題一、單選題1.若,則(

)A. B. C. D.【答案】C【分析】由共軛復數(shù)的概念及復數(shù)的運算即可得解.【詳解】故選:C2.已知向量,則(

)A.2 B.3 C.4 D.5【答案】D【分析】先求得,然后求得.【詳解】因為,所以.故選:D3.從分別寫有1,2,3,4,5,6的6張卡片中無放回隨機抽取2張,則抽到的2張卡片上的數(shù)字之積是4的倍數(shù)的概率為(

)A. B. C. D.【答案】C【分析】方法一:先列舉出所有情況,再從中挑出數(shù)字之積是4的倍數(shù)的情況,由古典概型求概率即可.【詳解】[方法一]:【最優(yōu)解】無序從6張卡片中無放回抽取2張,共有15種情況,其中數(shù)字之積為4的倍數(shù)的有6種情況,故概率為.[方法二]:有序從6張卡片中無放回抽取2張,共有,(2,1),(3,1),(4,1),(5,1),(6,1),(3,2),(4,2),(5,2),(6,2),(4,3),(5,3),(6,3),(5,4),(6,4),(6,5)30種情況,其中數(shù)字之積為4的倍數(shù)有(1,4),(2,4),(2,6),(3,4),(4,1),(4,2),(4,3),(4,5),(4,6),(5,4),(6,2),(6,4)12種情況,故概率為.故選:C.【整體點評】方法一:將抽出的卡片看成一個組合,再利用古典概型的概率公式解出,是該題的最優(yōu)解;方法二:將抽出的卡片看成一個排列,再利用古典概型的概率公式解出;4.分別統(tǒng)計了甲、乙兩位同學16周的各周課外體育運動時長(單位:h),得如下莖葉圖:則下列結(jié)論中錯誤的是(

)A.甲同學周課外體育運動時長的樣本中位數(shù)為7.4B.乙同學周課外體育運動時長的樣本平均數(shù)大于8C.甲同學周課外體育運動時長大于8的概率的估計值大于0.4D.乙同學周課外體育運動時長大于8的概率的估計值大于0.6【答案】C【分析】結(jié)合莖葉圖、中位數(shù)、平均數(shù)、古典概型等知識確定正確答案.【詳解】對于A選項,甲同學周課外體育運動時長的樣本中位數(shù)為,A選項結(jié)論正確.對于B選項,乙同學課外體育運動時長的樣本平均數(shù)為:,B選項結(jié)論正確.對于C選項,甲同學周課外體育運動時長大于的概率的估計值,C選項結(jié)論錯誤.對于D選項,乙同學周課外體育運動時長大于的概率的估計值,D選項結(jié)論正確.故選:C5.南水北調(diào)工程緩解了北方一些地區(qū)水資源短缺問題,其中一部分水蓄入某水庫.已知該水庫水位為海拔時,相應(yīng)水面的面積為;水位為海拔時,相應(yīng)水面的面積為,將該水庫在這兩個水位間的形狀看作一個棱臺,則該水庫水位從海拔上升到時,增加的水量約為()(

)A. B. C. D.【答案】C【分析】根據(jù)題意只要求出棱臺的高,即可利用棱臺的體積公式求出.【詳解】依題意可知棱臺的高為(m),所以增加的水量即為棱臺的體積.棱臺上底面積,下底面積,∴.故選:C.6.已知函數(shù),則(

)A.在上單調(diào)遞減 B.在上單調(diào)遞增C.在上單調(diào)遞減 D.在上單調(diào)遞增【答案】C【分析】化簡得出,利用余弦型函數(shù)的單調(diào)性逐項判斷可得出合適的選項.【詳解】因為.對于A選項,當時,,則在上單調(diào)遞增,A錯;對于B選項,當時,,則在上不單調(diào),B錯;對于C選項,當時,,則在上單調(diào)遞減,C對;對于D選項,當時,,則在上不單調(diào),D錯.故選:C.7.在長方體中,已知與平面和平面所成的角均為,則(

)A. B.AB與平面所成的角為C. D.與平面所成的角為【答案】D【分析】根據(jù)線面角的定義以及長方體的結(jié)構(gòu)特征即可求出.【詳解】如圖所示:不妨設(shè),依題以及長方體的結(jié)構(gòu)特征可知,與平面所成角為,與平面所成角為,所以,即,,解得.對于A,,,,A錯誤;對于B,過作于,易知平面,所以與平面所成角為,因為,所以,B錯誤;對于C,,,,C錯誤;對于D,與平面所成角為,,而,所以.D正確.故選:D.8.已知球O的半徑為1,四棱錐的頂點為O,底面的四個頂點均在球O的球面上,則當該四棱錐的體積最大時,其高為(

)A. B. C. D.【答案】C【分析】方法一:先證明當四棱錐的頂點O到底面ABCD所在小圓距離一定時,底面ABCD面積最大值為,進而得到四棱錐體積表達式,再利用均值定理去求四棱錐體積的最大值,從而得到當該四棱錐的體積最大時其高的值.【詳解】[方法一]:【最優(yōu)解】基本不等式設(shè)該四棱錐底面為四邊形ABCD,四邊形ABCD所在小圓半徑為r,設(shè)四邊形ABCD對角線夾角為,則(當且僅當四邊形ABCD為正方形時等號成立)即當四棱錐的頂點O到底面ABCD所在小圓距離一定時,底面ABCD面積最大值為又設(shè)四棱錐的高為,則,當且僅當即時等號成立.故選:C[方法二]:統(tǒng)一變量+基本不等式由題意可知,當四棱錐為正四棱錐時,其體積最大,設(shè)底面邊長為,底面所在圓的半徑為,則,所以該四棱錐的高,(當且僅當,即時,等號成立)所以該四棱錐的體積最大時,其高.故選:C.[方法三]:利用導數(shù)求最值由題意可知,當四棱錐為正四棱錐時,其體積最大,設(shè)底面邊長為,底面所在圓的半徑為,則,所以該四棱錐的高,,令,,設(shè),則,,,單調(diào)遞增,,,單調(diào)遞減,所以當時,最大,此時.故選:C.【整體點評】方法一:思維嚴謹,利用基本不等式求最值,模型熟悉,是該題的最優(yōu)解;方法二:消元,實現(xiàn)變量統(tǒng)一,再利用基本不等式求最值;方法三:消元,實現(xiàn)變量統(tǒng)一,利用導數(shù)求最值,是最值問題的常用解法,操作簡便,是通性通法.二、多選題9.有一組樣本數(shù)據(jù),,…,,由這組數(shù)據(jù)得到新樣本數(shù)據(jù),,…,,其中(為非零常數(shù),則(

)A.兩組樣本數(shù)據(jù)的樣本平均數(shù)相同B.兩組樣本數(shù)據(jù)的樣本中位數(shù)相同C.兩組樣本數(shù)據(jù)的樣本標準差相同D.兩組樣本數(shù)據(jù)的樣本極差相同【答案】CD【分析】A、C利用兩組數(shù)據(jù)的線性關(guān)系有、,即可判斷正誤;根據(jù)中位數(shù)、極差的定義,結(jié)合已知線性關(guān)系可判斷B、D的正誤.【詳解】A:且,故平均數(shù)不相同,錯誤;B:若第一組中位數(shù)為,則第二組的中位數(shù)為,顯然不相同,錯誤;C:,故方差相同,正確;D:由極差的定義知:若第一組的極差為,則第二組的極差為,故極差相同,正確;故選:CD10.已知為坐標原點,點,,,,則(

)A. B.C. D.【答案】AC【分析】A、B寫出,、,的坐標,利用坐標公式求模,即可判斷正誤;C、D根據(jù)向量的坐標,應(yīng)用向量數(shù)量積的坐標表示及兩角和差公式化簡,即可判斷正誤.【詳解】A:,,所以,,故,正確;B:,,所以,同理,故不一定相等,錯誤;C:由題意得:,,正確;D:由題意得:,,故一般來說故錯誤;故選:AC11.如圖,四邊形為正方形,平面,,,記三棱錐,,的體積分別為,,,則(

)A. B. C. D.【答案】CD【分析】找到三棱錐的高,利用三棱錐體積公式分別求出,,,進而判斷出結(jié)果.【詳解】如圖連接交于O,連接.設(shè),則.由平面,,所以平面,所以,.由平面,平面,所以.又,且,平面,所以平面,所以.易知,,所以,所以,而,平面,所以平面.又,,所以有,所以選項AB不正確,CD正確.故選:CD.12.有一個三棱錐,其中一個面為邊長為2的正三角形,有兩個面為等腰直角三角形,則該幾何體的體積可能是(

)A. B. C. D.【答案】BCD【分析】分三種情況討論,作出圖形,確定三棱錐中每條棱的長度,即可求出其體積.【詳解】如圖所示:①若平面,為邊長為2的正三角形,,,都是等腰直角三角形,滿足題目條件,故其體積;②若平面,為邊長為2的正三角形,,,都是等腰直角三角形,滿足題目條件,故其體積;③若為邊長為2的正三角形,,都是等腰直角三角形,,,滿足題目條件,取中點,因為,而,所以,即有平面,故其體積為;故選:BCD三、填空題13.已知向量,,,_______.【答案】【分析】由已知可得,展開化簡后可得結(jié)果.【詳解】由已知可得,因此,.故答案為:.14.從甲、乙等5名同學中隨機選3名參加社區(qū)服務(wù)工作,則甲、乙都入選的概率為____________.【答案】##0.3【分析】根據(jù)古典概型計算即可【詳解】解法一:設(shè)這5名同學分別為甲,乙,1,2,3,從5名同學中隨機選3名,有:(甲,乙,1),(甲,乙,2),(甲,乙,3),(甲,1,2),(甲,1,3),(甲,2,3),(乙,1,2),(乙,1,3),(乙,2,3),(1,2,3),共10種選法;其中,甲、乙都入選的選法有3種,故所求概率.故答案為:.解法二:從5名同學中隨機選3名的方法數(shù)為甲、乙都入選的方法數(shù)為,所以甲、乙都入選的概率故答案為:15.我國南宋著名數(shù)學家秦九韶,發(fā)現(xiàn)了從三角形三邊求面積的公式,他把這種方法稱為“三斜求積”,它填補了我國傳統(tǒng)數(shù)學的一個空白.如果把這個方法寫成公式,就是,其中a,b,c是三角形的三邊,S是三角形的面積.設(shè)某三角形的三邊,則該三角形的面積___________.【答案】.【分析】根據(jù)題中所給的公式代值解出.【詳解】因為,所以.故答案為:.16.已知中,點D在邊BC上,.當取得最小值時,________.【答案】##【分析】設(shè),利用余弦定理表示出后,結(jié)合基本不等式即可得解.【詳解】[方法一]:余弦定理設(shè),則在中,,在中,,所以,當且僅當即時,等號成立,所以當取最小值時,.故答案為:.[方法二]:建系法令BD=t,以D為原點,OC為x軸,建立平面直角坐標系.則C(2t,0),A(1,),B(-t,0)[方法三]:余弦定理設(shè)BD=x,CD=2x.由余弦定理得,,,,令,則,,,當且僅當,即時等號成立.[方法四]:判別式法設(shè),則在中,,在中,,所以,記,則由方程有解得:即,解得:所以,此時所以當取最小值時,,即.

四、解答題17.甲、乙兩個學校進行體育比賽,比賽共設(shè)三個項目,每個項目勝方得10分,負方得0分,沒有平局.三個項目比賽結(jié)束后,總得分高的學校獲得冠軍.已知甲學校在三個項目中獲勝的概率分別為0.5,0.4,0.8,各項目的比賽結(jié)果相互獨立.求甲學校獲得冠軍的概率.【答案】【分析】設(shè)甲在三個項目中獲勝的事件依次記為,再根據(jù)甲獲得冠軍則至少獲勝兩個項目,利用互斥事件的概率加法公式以及相互獨立事件的乘法公式即可求出.【詳解】設(shè)甲在三個項目中獲勝的事件依次記為,所以甲學校獲得冠軍的概率為.18.在某地區(qū)進行流行病調(diào)查,隨機調(diào)查了100名某種疾病患者的年齡,得到如下的樣本數(shù)據(jù)頻率分布直方圖.(1)估計該地區(qū)這種疾病患者的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(2)估計該地區(qū)一人患這種疾病年齡在區(qū)間的概率.【答案】(1)47.9(2)0.89【分析】(1)根據(jù)平均數(shù)的求法求值即可;(2)由頻率分布直方圖即可得到該區(qū)間的患疾病的概率.【詳解】(1)設(shè)平均年齡為,則由頻率分布直方圖可得:從而估計本地區(qū)這種疾病患者的平均年齡為47.9歲.(2)由頻率分布直方圖可知患病年齡超過20歲低于70歲的概率為:從而估計該地區(qū)一人患這種疾病年齡在該區(qū)間的概率為0.89.19.如圖,四面體中,,E為AC的中點.(1)證明:平面平面ACD;(2)設(shè),點F在BD上,當?shù)拿娣e最小時,求三棱錐的體積.【答案】(1)證明詳見解析(2)【分析】(1)通過證明平面來證得平面平面.(2)首先判斷出三角形的面積最小時點的位置,然后求得到平面的距離,從而求得三棱錐的體積.【詳解】(1)由于,是的中點,所以.由于,所以,所以,故,由于,平面,所以平面,由于平面,所以平面平面.(2)[方法一]:判別幾何關(guān)系依題意,,三角形是等邊三角形,所以,由于,所以三角形是等腰直角三角形,所以.,所以,由于,平面,所以平面.由于,所以,由于,所以,所以,所以,由于,所以當最短時,三角形的面積最小過作,垂足為,在中,,解得,所以,所以過作,垂足為,則,所以平面,且,所以,所以.[方法二]:等體積轉(zhuǎn)換,,是邊長為2的等邊三角形,連接20.記的內(nèi)角A,B,C的對邊分別為a,b,c,分別以a,b,c為邊長的三個正三角形的面積依次為,已知.(1)求的面積;(2)若,求b.【答案】(1)(2)【分析】(1)先表示出,再由求得,結(jié)合余弦定理及平方關(guān)系求得,再由面積公式求解即可;(2)由正弦定理得,即可求解.【詳解】(1)由題意得,則,即,由余弦定理得,整理得,則,又,則,,則;(2)由正弦定理得:,則,則,.21.記的內(nèi)角A,B,C的對邊分別為a,b,c,已知.(1)若,求B;(2)求的最小值.【答案】(1);(2).【分析】(1)根據(jù)二倍角公式以及兩角差的余弦公式可將化成,再結(jié)合,即可求出;(2)由(1)知,,,再利用正弦定理以及二倍角公式將化成,然后利用基本不等式即可解出.【詳解】(1)因為,即,而,所以;(2)由(1)知,,所以,而,所以,即有,所以所以.當且僅當時取等號,所以的最小值為.22.如圖,在以P,A,B,C,D為頂點的五面體中,四邊形ABCD為等腰梯形,,,平面平面,.(1)求證:平面平面;(2)若二面角的余弦值為,求直線PD與平面PBC所成角的大?。敬鸢浮?1)證明見解析(2)【分析】(1)由面面垂直的性質(zhì)得到平面,由面面垂直的判定即可證明;(2)過作,,垂

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論