三相橋式全控整流電路的設(shè)計(jì)和仿真_第1頁
三相橋式全控整流電路的設(shè)計(jì)和仿真_第2頁
三相橋式全控整流電路的設(shè)計(jì)和仿真_第3頁
三相橋式全控整流電路的設(shè)計(jì)和仿真_第4頁
三相橋式全控整流電路的設(shè)計(jì)和仿真_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

...wd......wd......wd...第一章緒言1.1設(shè)計(jì)背景目前,各類電力電子變換器的輸入整流電路輸入功率級(jí)一般采用不可控整流或相控整流電路。這類整流電路構(gòu)造簡單,控制技術(shù)成熟,但交流側(cè)輸入功率因數(shù)低,并向電網(wǎng)注入大量的諧波電流。據(jù)估計(jì),在興旺國家有60%的電能經(jīng)過變換后才使用,而這個(gè)數(shù)字在本世紀(jì)初到達(dá)95%。 電力電子技術(shù)在電力系統(tǒng)中有著非常廣泛的應(yīng)用。據(jù)估計(jì),興旺國家在用戶最終使用的電能中,有60%以上的電能至少經(jīng)過一次以上電力電子變流裝置的處理。電力系統(tǒng)在通向現(xiàn)代化的進(jìn)程中,電力電子技術(shù)是關(guān)鍵技術(shù)之一。可以毫不夸張地說,如果離開電力電子技術(shù),電力系統(tǒng)的現(xiàn)代化就是不可想象的。而電能的傳輸中,直流輸電在長距離、大容量輸電時(shí)有很大的優(yōu)勢(shì),其送電端的整流閥和受電端的逆變閥都采用晶閘管變各種電子裝置一般都需要不同電壓等級(jí)的直流電源供電。通信設(shè)備中的程控交換機(jī)所用的直流電源以前用晶閘管整流電源,現(xiàn)在已改為采用全控型器件的高頻開關(guān)電源。大型計(jì)算機(jī)所需的工作電源、微型計(jì)算機(jī)內(nèi)部的電源現(xiàn)在也都采用高頻開關(guān)電源。在各種電子裝置中,以前大量采用線性穩(wěn)壓電源供電,由于高頻開關(guān)電源體積小、重量輕、效率高,現(xiàn)在已逐漸取代了線性電源。因?yàn)楦鞣N信息技術(shù)裝置都需要電力電子裝置提供電源,所以可以說信息電子技術(shù)離不開電力電子技術(shù)。近年開展起來的柔性交流輸電〔FACTS〕也是依靠電力電子裝置才得以實(shí)現(xiàn)的。隨著社會(huì)生產(chǎn)和科學(xué)技術(shù)的開展,整流電路在自動(dòng)控制系統(tǒng)、測(cè)量系統(tǒng)和發(fā)電機(jī)勵(lì)磁系統(tǒng)等領(lǐng)域的應(yīng)用日益廣泛。常用的三相整流電路有三相橋式不可控整流電路、三相橋式半控整流電路和三相橋式全控整流電路,由于整流電路涉及到交流信號(hào)、直流信號(hào)以及觸發(fā)信號(hào),同時(shí)包含晶閘管、電容、電感、電阻等多種元件,采用常規(guī)電路分析方法顯得相當(dāng)繁瑣,高壓情況下實(shí)驗(yàn)也難順利進(jìn)展。Matlab提供的可視化仿真工具Simulink可直接建設(shè)電路仿真模型,隨意改變仿真參數(shù),并且立即可得到任意的仿真結(jié)果,直觀性強(qiáng),進(jìn)一步省去了編程的步驟。本文利用Simulink對(duì)三相橋式全控整流電路進(jìn)展建模,對(duì)不同控制角、橋故障情況下進(jìn)展了仿真分析,既進(jìn)一步加深了三相橋式全控整流電路的理論,同時(shí)也為現(xiàn)代電力電子實(shí)驗(yàn)教學(xué)奠定良好的實(shí)驗(yàn)根基。此次課程設(shè)計(jì)要求設(shè)計(jì)晶閘管三相橋式可控整流電路,與三相半波整流電路相比,三相橋式整流電路的電源利用率更高,應(yīng)用更為廣泛。1.2設(shè)計(jì)任務(wù)?晶閘管三相橋式可控整流電路設(shè)計(jì)與仿真?一、設(shè)計(jì)內(nèi)容及技術(shù)要求:計(jì)算機(jī)仿真具有效率高、精度高、可靠性高和成本低等特點(diǎn),已經(jīng)廣泛應(yīng)用于電力電子電路〔或系統(tǒng)〕的分析和設(shè)計(jì)中。計(jì)算機(jī)仿真不僅可以取代系統(tǒng)的許多繁瑣的人工分析,減輕勞動(dòng)強(qiáng)度,提高分析和設(shè)計(jì)能力,防止因?yàn)榻馕龇ㄔ诮铺幚碇袔淼妮^大誤差,還可以與實(shí)物試制和調(diào)試相互補(bǔ)充,最大限度地降低設(shè)計(jì)成本,縮短系統(tǒng)研制周期??梢哉f,電路的計(jì)算機(jī)仿真技術(shù)大大加速了電路的設(shè)計(jì)和試驗(yàn)過程。通過本次仿真,學(xué)生可以初步認(rèn)識(shí)電力電子計(jì)算機(jī)仿真的優(yōu)勢(shì),并掌握電力電子計(jì)算機(jī)仿真的基本方法。晶閘管三相橋式可控整流電路的電路,參數(shù)要求:電網(wǎng)頻率f=50hz電網(wǎng)額定電壓U=380v電網(wǎng)電壓波動(dòng)正負(fù)10%阻感負(fù)載電壓0——250V連續(xù)可調(diào)。2、設(shè)計(jì)內(nèi)容〔1〕制定設(shè)計(jì)方案;(2)主電路設(shè)計(jì)及主電路元件選擇;(3)驅(qū)動(dòng)電路和保護(hù)電路設(shè)計(jì)及參數(shù)計(jì)算;器件選擇;(4)繪制電路原理圖;〔5〕總體電路原理圖及其說明。3、仿真任務(wù)要求〔1〕熟悉matlab/simulink/powersystem中的仿真模塊用法及功能;〔2〕根據(jù)設(shè)計(jì)電路搭建仿真模型;〔3〕設(shè)置參數(shù)并進(jìn)展仿真〔4〕給出不同觸發(fā)角時(shí)對(duì)應(yīng)電壓電流的波形;4、設(shè)計(jì)的總體要求〔1〕熟悉整流和觸發(fā)電路的基本原理,能夠運(yùn)用所學(xué)的理論知識(shí)分析設(shè)計(jì)任務(wù);〔2〕掌握基本電路的數(shù)據(jù)分析、處理;描繪波形并加以判斷;〔3〕能正確設(shè)計(jì)電路,畫出線路圖,分析電路原理;〔4〕廣泛收集相關(guān)技術(shù)資料;第二章方案選擇論證2.1方案分析單相可控電路與三相可控電路相比,有構(gòu)造簡單,輸出脈動(dòng)大,脈動(dòng)頻率低的特點(diǎn),其不適于容量要求高的情況,而三相可控整流電路有與之基本相反的特點(diǎn),對(duì)于相當(dāng)于反電動(dòng)勢(shì)負(fù)載的電動(dòng)機(jī)來說,它能滿足其電流容量較大,電流脈動(dòng)小且連續(xù)不斷的要求。2.2方案選擇課設(shè)題目中給出的正是要求為220V、20A的直流電動(dòng)機(jī)供電,它的容量為S=kw,屬于高容量,所以應(yīng)選用三相可控整流電路整流。另外三相橋式整流電壓的脈動(dòng)頻率比三相半波高一倍,因而所需平波電抗器的電感量也減小約一半。三相半波雖具有接線簡單的特點(diǎn),但由于其只采用三個(gè)晶閘管,所以晶閘管承受的反向峰值電壓較高,并且電流是單方向的,存在直流磁化問題?;谝陨显?,最終我選擇三相橋式全控電路為電機(jī)整流。三相可控整流電路的控制量可以很大,輸出電壓脈動(dòng)較小,易濾波,控制滯后時(shí)間短,因此在工業(yè)中幾乎都是采用三相可控整流電路。在電子設(shè)備中有時(shí)也會(huì)遇到功率較大的電源,例如幾百瓦甚至超過1—2kw的電源,這時(shí)為了提高變壓器的利用率,減小波紋系數(shù),也常采用三相整流電路。另外由于三相半波可控整流電路的主要缺點(diǎn)在于其變壓器二次側(cè)電流中含有直流分量,為此在應(yīng)用中較少。而采用三相橋式全控整流電路,可以有效的防止直流磁化作用。雖然三相橋式全控整流電路的晶閘管的數(shù)目比三相半波可控整流電路的少,但是三相橋式全控整流電路的輸出電流波形便得平直,當(dāng)電感足夠大時(shí),負(fù)載電流波形可以近似為一條水平線。在實(shí)際應(yīng)用中,特別是小功率場(chǎng)合,較多采用單相可控整流電路。當(dāng)功率超過4KW時(shí),考慮到三相負(fù)載的平衡,因而采用三相橋式全控整流電路。第三章電路設(shè)計(jì)3.1主電路原理分析晶閘管按從1至6的順序?qū)?,為此將晶閘管按圖示的順序編號(hào),即共陰極組中與a、b、c三相電源相接的3個(gè)晶閘管分別為VT1、VT3、VT5,共陽極組中與a、b、c三相電源相接的3個(gè)晶閘管分別為VT4、VT6、VT2。編號(hào)如圖示,晶閘管的導(dǎo)通順序?yàn)閂T1-VT2-VT3-VT4-VT5-VT6。圖3-1主電路原理圖其工作特點(diǎn)是任何時(shí)刻都有不同組別的兩只晶閘管同時(shí)導(dǎo)通,構(gòu)成電流通路,因此為保證電路啟動(dòng)或電流斷續(xù)后能正常導(dǎo)通,必須對(duì)不同組別應(yīng)到導(dǎo)通的一對(duì)晶閘管同時(shí)加觸發(fā)脈沖,所以觸發(fā)脈沖的寬度應(yīng)大于π/3的寬脈沖。寬脈沖觸發(fā)要求觸發(fā)功率大,易使脈沖變壓器飽和,所以可以采用脈沖列代替雙窄脈沖;每隔π/3換相一次,換相過程在共陰極組和共陽極組輪流進(jìn)展,但只在同一組別中換相。接線圖中晶閘管的編號(hào)方法使每個(gè)周期內(nèi)6個(gè)管子的組合導(dǎo)通順序是VT1-VT2-VT3-VT4-VT5-VT6;共陰極組T1,T3,T5的脈沖依次相差2π/3;同一相的上下兩個(gè)橋臂,即VT1和VT4,VT3和VT6,VT5和VT2的脈沖相差π,給分析帶來了方便;當(dāng)α=O時(shí),輸出電壓Ud一周期內(nèi)的波形是6個(gè)線電壓的包絡(luò)線。所以輸出脈動(dòng)直流電壓頻率是電源頻率的6倍,比三相半波電路高l倍,脈動(dòng)減小,而且每次脈動(dòng)的波形都一樣,故該電路又可稱為6脈動(dòng)整流電路。同理,三相半波整流電路稱為3脈動(dòng)整流電路。α>0時(shí),Ud的波形出現(xiàn)缺口,隨著α角的增大,缺口增大,輸出電壓平均值降低。當(dāng)α=2π/3時(shí),輸出電壓為零,所以電阻性負(fù)載時(shí),α的移相范圍是O~2π/3;當(dāng)O≤α≤π/3時(shí),電流連續(xù),每個(gè)晶閘管導(dǎo)通2π/3;當(dāng)π/3≤α≤2π/3時(shí),電流斷續(xù),個(gè)晶閘管導(dǎo)通小于2π/3。23α=π/3是電阻性負(fù)載電流連續(xù)和斷續(xù)的分界點(diǎn)。第四章仿真分析4.1建設(shè)仿真模型〔1〕首先建設(shè)一個(gè)仿真的新文件,命名為EQ?!?〕提取電路與器件模塊,組成上述電路的主要元件有三相交流電源,晶閘管、RLC負(fù)載等。表4-1三相整流電路模型主要元器件元器件名稱提取元器件路徑交流電源Electricalsource/ACvoltagesource三相電壓-電流測(cè)量單元Measurements/Three-phaseV-Imeasurement三相晶閘管整流器Extralibrary/three-phaselibrary/6-pulsethyristorbridgeRLC負(fù)載Elements/seriesRLCbridge6脈沖發(fā)生器Extralibrary/controlblocks/synchronized6-pulsegenerator觸發(fā)角設(shè)定Simulink/sources/constans〔3〕將器件建設(shè)系統(tǒng)模型圖如下根據(jù)三相橋式全控整流電路的原理可以利用Simulink內(nèi)的模塊建設(shè)仿真模型如圖2所示,設(shè)置三個(gè)交流電壓源Va,Vb,Vc相位角依次相差120°,得到整流橋的三相電源。用6個(gè)Thyristor構(gòu)成整流橋,實(shí)現(xiàn)交流電壓到直流電壓的轉(zhuǎn)換。6個(gè)PULSEgenerator產(chǎn)生整流橋的觸發(fā)脈沖,且從上到下分別給1~6號(hào)晶閘管觸發(fā)脈沖。圖4-1三相橋式全控整流電路仿真模型4.2仿真參數(shù)的設(shè)置1)電源參數(shù)設(shè)置:三相電源的電壓峰值為220V×,可表示為“220*sqrt〔2)〞,頻率為50Hz,相位分別為0、-120°、-240°。2〕三相晶閘管整流器參數(shù)設(shè)置:使用默認(rèn)值。3〕6脈沖發(fā)生器設(shè)置:頻率為50Hz,脈沖寬度取1°,取雙脈沖觸發(fā)方式。4)觸發(fā)角設(shè)置:可以根據(jù)需要將alph設(shè)置為30°、60°、90°。5〕采用變步長算法ode23tb(stiff/TR.BDF2)。6〕負(fù)載可以根據(jù)需要設(shè)成純電阻、純電感、阻感等,本次仿真中為電阻負(fù)載R=10Ω,阻感負(fù)載R=10Ω,L=1H。4.3仿真結(jié)果及波形分析設(shè)置仿真時(shí)間0.06s,數(shù)值算法采用ode23tb(stiff/TR.BDF2)。啟動(dòng)仿真,根據(jù)三相橋式全控整流電路的原理圖,對(duì)不同的觸發(fā)角α?xí)绊戄敵鲭妷哼M(jìn)展仿真。從以下仿真波形圖可知改變不同的控制角,輸出電壓在發(fā)生不同的變化。1、阻性負(fù)載時(shí),仿真結(jié)果對(duì)波形的變化分析如下:〔1〕α=30°時(shí)圖4-2輸出電壓、電流波形圖4-3整流器輸入的三相相電壓波形將圖4-3所示三相電壓波形與圖4-2所示的整流電壓相比較,整流后的電壓是直流,一個(gè)周期內(nèi)有六個(gè)波頭且波形與三相輸入電壓波形相對(duì)應(yīng)。證明仿真波形是準(zhǔn)確的。因?yàn)槭请娮柝?fù)載,整流后的電壓和電流波形一樣,但幅值不同。圖4-4三相電流波形圖4-4中各相電流波反映了晶閘管中流過電流的波形,由此波形可以看出,晶閘管一周期中有120°處于通態(tài),240°處于斷態(tài),由于負(fù)載為電阻,故晶閘管處于通態(tài)時(shí)的電流波形與相應(yīng)時(shí)段的ud波形一樣。以變壓器二次側(cè)a相電流的波形為例,該波形的特點(diǎn)是,在VT1處于通態(tài)的120°期間,ia為正,假設(shè)ia波形的形狀與同時(shí)段的ud波形一樣,在VT4處于通態(tài)的120°期間,ia波形的形狀也與同時(shí)段的ud波形一樣,但為負(fù)值。變壓器二次側(cè)b相和c相電流的波形與變壓器二次側(cè)a相電流的波形一樣,只是相位不同,依次相差120°。a角的移相范圍是120°,如果繼續(xù)增大至120°,整流輸出電壓ud波形將全為零,其平均值也為零[5]。圖4-5晶閘管VT1的電流〔VTi〕和電壓〔VTu〕圖4-5反映了通過晶閘管的電流及其電壓,VT導(dǎo)通時(shí),相當(dāng)于短路其兩端電壓為零,有電流通過,VT關(guān)斷時(shí),電流為零,所受電壓最大值為電源電壓峰值。VT的a移相范圍為180?!?〕α=60°時(shí)圖4-6輸出電壓、電流波形圖4-7三相電流波形圖4-8晶閘管VT1的電流〔VTi〕和電壓〔VTu〕α=60°時(shí)相比α=30°時(shí)輸出電壓、電流,三相電流及晶閘管VT1的電壓電流的幅值明顯減小,這是因?yàn)樗鼈兊姆荡笮∨ccosα的大小成正比。所以所得波形與理論相符合?!?〕α=90°時(shí)圖4-9輸出電壓、電流波形圖4-10三相電流波形圖4-11晶閘管VT1的電流〔VTi〕和電壓〔VTu〕α=90°時(shí)相比α=30°、60°時(shí)輸出電壓、電流,三相電流及晶閘管VT1的電壓電流的幅值明顯減小,基本趨向于零。所得波形與理論相符合。2、阻感性負(fù)載時(shí),仿真結(jié)果對(duì)波形的變化分析如下:〔1〕當(dāng)α分別等于0°、30°、60°、90°時(shí),輸出電壓及電流的波形的仿真結(jié)果如以以下圖所示:圖4-12輸出電壓、電流波形〔α=0°〕圖4-13輸出電壓、電流波形〔α=30°〕圖4-14輸出電壓、電流波形〔α=60°〕圖4-15輸出電壓、電流波形〔α=90°〕從以上仿真波形圖可知改變不同的控制角,輸出電壓、電流隨之減小,直至α=90°時(shí)基本為零。由于電感的存在,電流的波形基本趨于平直化。從仿真波形上看稍微有所波動(dòng),不過最終會(huì)趨向于零或是在零附近很小的范圍內(nèi)波動(dòng)。所以,仿真結(jié)果基本正確。2〕當(dāng)α分別等于0°、30°、60°、90°時(shí),電源三相電流波形的仿真結(jié)果比照分析如下:圖4-16三相電流波形〔α=0°阻感性負(fù)載〕圖4-17三相電流波形〔α=30°阻感性負(fù)載〕圖4-18三相電流波形〔α=60°阻感性負(fù)載〕圖4-19三相電流波形〔α=90°阻感性負(fù)載〕從以上仿真波形圖可知改變不同的控制角,三相電流隨之減小,直至α=90°時(shí)基本為零。由于電感的存在,電流的波形基本趨于平直化。從仿真波形上看稍微有所波動(dòng),不過最終會(huì)趨向于零或是在零附近很小的范圍內(nèi)波動(dòng)。所以,仿真結(jié)果基本正確。3〕當(dāng)α分別等于0°、30°、60°、90°時(shí),晶閘管VT1的電流及電壓波形的仿真結(jié)果比照分析如下:圖4-20晶閘管VT1的電流VTi和電壓VTu〔α=0°阻感性負(fù)載〕圖4-21晶閘管VT1的電流VTi和電壓VTu〔α=30°阻感性負(fù)載〕圖4-22晶閘管VT1的電流VTi和電壓VTu〔α=60°阻感性負(fù)載〕圖4-23晶閘管VT1的電流VTi和電壓VTu〔α=90°阻感性負(fù)載〕從以上仿真波形圖可知改變不同的控制角,晶閘管VT1的電流VTi和電壓VTu隨之減小,直至α=90°時(shí)基本為零。由于電感的存在,電流的波形基本趨于平直化。從仿真波形上看稍微有所波動(dòng),不過最終會(huì)趨向于零或是在零附近很小的范圍內(nèi)波動(dòng)。所以,仿真結(jié)果基本正確。綜上所述,三項(xiàng)全橋整流電路的仿真結(jié)果基本上與理論知識(shí)相一致,所以仿真試驗(yàn)的任務(wù)基本完成。第五章設(shè)計(jì)總結(jié)通過仿真和分析,可知三相橋式全控整流電路的輸出電壓受控制角α和負(fù)載特性的影響,文中應(yīng)用Matlab的可視化仿真工具simulink對(duì)三相橋式全控整流電路的仿真結(jié)果進(jìn)展了詳細(xì)分析,并與相關(guān)文獻(xiàn)中采用常規(guī)電路分析方法所得到的輸出電壓波形進(jìn)展比較,進(jìn)一步驗(yàn)證了仿真結(jié)果的正確性。采用Matlab/Simulink對(duì)三相橋式全控整流電路進(jìn)展仿真分析,防止了常規(guī)分析方法中繁瑣的繪圖和計(jì)算過程,得到了一種直觀、快捷分析整流電路的新方法。應(yīng)用Matlab/Simulink進(jìn)展仿真,在仿真過程中可以靈活改變仿真參數(shù),并且能直觀地觀察到仿真結(jié)果隨參數(shù)的變化情況。應(yīng)用Matlab對(duì)整流電路故障仿真研究時(shí),可以判斷出不同橋臂晶閘管發(fā)生故障時(shí)產(chǎn)生的波形現(xiàn)象,為分析三相橋式整流電路打下較好

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論