版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
本文格式為Word版,下載可任意編輯——第四章不定積分習題詳細解答20230919
習題4-1
1.已知f(x)之一的原函數(shù)為sin3x,求?f?(x)dx.解:?f?(x)dx?f(x)?C?(sin3x)??C?3cos3x?C.2.設[lnf(x)]??sec2x,求f(x).
解:由于[lnf(x)]??sec2x,故lnf(x)?tanx?Cx1(C1為任意常數(shù)),f(x)?Cetan3.若e?x是f(x)的原函數(shù),求?x2f(lnx)dx.解:f(x)=(e?x)???e?x,f(lnx)??e?lnx??1x2x,?x2f(lnx)dx??2?C
4.若f(x)是e?x的原函數(shù),求?f(lnx)xdx.解:由于f?(x)?e?x,所以f(x)??e?x?C10,f(lnx)??e?lnx??x?C0,
f(lnx)x??1C0f(lnx)1x2?x,?xdx?x?C0ln|x|?C.5.求以下不定積分:35(1)解:?(1x?5xx)dx??(x?12?5x2)dx?2x?2x2?C
2)解:?(2x?3x)2dx?4x2?6x9x(2ln2?ln6?2ln3?C
(3).?1?x?x2x(1?x2)dx??[11?x2?1x]dx?arctanx?ln|x|?C(4)解:?(1x2?1?cot2x)dx??1x2?1dx??(csc2x?1)dx=arcsinx?cotx?x?C
解:?10x23xdx??10x8xdx??80xdx?80x(5)ln80?C
(6)解:?sin2x2dx=??12(1?cosx)dx?112x?2sinx?C
?cos2xcosx?sinxdx??cos2x?sin2(7)xcosx?sinxdx??(cosx?sinx)dx??sinx?cosx?C
(8)解:?cos2xcos2xsin2xdx??cos2x?sin2xcos2xsin2xdx??(11sin2x?cos2x)dx??cotx?tanx?C
(9)解:?secx(secx?tanx)dx??sec2xdx??secxtanxdx?tanx?secx?C??x,(10)解:設f(x)?max{1,x},則f(x)??x??1?1,?1?x?1.
??x,x?1?f(x)在(??,??)上連續(xù),
1
?12?x?C,x??1?21則必存在原函數(shù)F(x),F(xiàn)(x)???x?C2,?1?x?1又?F(x)須四處連續(xù),有
??1x2?.?2C3,x?1xlim11??1?(x?C2)?xlim??1?(?2x2?C1),即?1?C2??2?C1,lim(1x?1?2x2?C3)?lim(x?1?x?C2),即12?C3?1?C2,聯(lián)立并令C,可得C11?C2?2+C,C3?1?C.
???122x?C,x??1?故?max{1,x}dx???x?1?2?C,?1?x?1.
??12?2x?1?C,x?16.解:設所求曲線方程為y?f(x),其上任一點(x,y)處切線的斜率為
dydx?x3,從而y??x3dx?14x4?C由y(0)?0,得C?0,因此所求曲線方程為y?14x4.7.解:由于
????1sin2x???sinxcosx,???1cos2x???cosxsinx
?2??2?????1??14cos2x???2sin2x?sinxcosx
所以12sin2x、?12cos2x、?14cos2x都是sinxcosx的原函數(shù).
習題4-2
1.填空.
(1)1x=d(?1x+C)(2)12dxxdx=d(lnx+C)
(3)exdx=d(ex+C)(4)sec2xdx=d(tanx+C)(5)sinxdx=d(?cosx+C)(6)cosxdx=d(sinx+C)
2
(7)11?x2dx=d(arcsinx+C)(8)
x1?x2dx=d(1?x2+C)(9)tanxsecxdx=d(secx+C)(10)
1x2?1dx=d(arctanx+C)(11)1x2(x?1)xdx=d(2arctanx+C)(12)xdx=d(2+C)2.求以下不定積分:
1x(1)?e5xdx?5?e5xd5x?e55?C
(2)?(2?x)72dx???(2?x)72d(2?x)??29(2?x)92?C
(3)?dx1?3x??1d(1?3x)13?1?3x??3ln|1?3x|?C(4)?exd(ex?3)ex?3dx??ex?3?ln(ex?3)?C
(5)?(e2x?2e3x?2)exdx??(e2x?2e3x?2)d(ex)?1e3x?1e4x?2ex32?C
(6)?6xd(x2?3)2x2?3dx?3?x2?3?3ln(x?3)?C
(7)
?x1x2?4dx??x2?4d(x2?42)?12?(x2?4)?12d(x2?4)
1?(x2?4)2?C?x2?4?C
(8)?x3cosx4dx?14?cosx4dx4?14sinx4?C(9)?ln4xln5xxdx??ln4xd(lnx)?5?C
1x1(10)?ex11x2dx??ed(?x)??ex?C
?3x(11)?exxdx??23?e?3xd(?3x)??23e?3?C
(12)
?arctanxx(1?x)dx?2?arctanx1?xdx?2?arctanx1?(x)2d(x)
?2?arctanxd(arctanx)?(arctanx)2?C
d(3x(13)
?dx2)4?9x2??dx?1?1321?(3x23?2)1?(3x3arcsinx2?C2)23
(14)
?arcsinx1?x2dx??arcsinxd(arcsinx)?arcsin2x2?Cx(15)
?10arccos1?x2dx???10arccosxd(arccosx)??10arccosxln10?C(16)?tanx2?1x22sinx2?1x2?1dx??tanx?1dx?1??cosx2?1dx2?1???dcosx2?1cosx2?1??ln|cosx2?1|?C
(17)?cosxsin3xdx??sin3xdsinx?14sin4x?C
(18)?sinxcosxdx???1cosxd(cosx)??2cosx?C2(19)
?sinx?cosx33sinx?cosxdx??13sinx?cosxd(sinx?cosx)?2(sinx?cosx)?C
(20)
?1?lnx(xlnx)2dx??1(xlnx)2d(xlnx)??1xlnx?C
(21)
?1xlnxlnlnxdx??1lnxlnlnxd(lnx)??1lnlnxd(lnlnx)?lnlnlnx?C
(22)?cos4xdx??(1?cos2x21?2cos2x?cos22x2)dx??4dx
??(1cos2xcos22xx?sin2x1?cos4x4?2?4)dx?4??2dx?3x?sin2xsin4x4?4?C
(23)?cos3xdx??cos2xcosxdx??(1?sin2x)d(sinx)?sinx?sin3x3?C
(24)?sin3xcos5xdx??sin2xcos5xdcosx???(1?cos2x)cos5xdcosx
?118cos8x?6cos6x?C(25)?tan3xsec5xdx?tan2xsec4xdsecx??(sec2x?1)sec4xdsecx
?17secx7x?15sec5x?C(26)?cos5xsin4xdx??sin9x?sinx2dx??1118cos9x?2cosx?C(27)?tan3xsec4xdx??tan3xsec2xdtanx??tan3x(tan2x?1)dtanx
4
?1tanx6x?1tan564x?C(28)設x?tant(|t|??2),
?dxsec2tdtcostdtdsint11x2x2?1??tan2tsect??sin2t??sin2t??sint?C???x2x?C(29)設x?sint(|t|??2),
?x2dx1?x2??sin2t?costdtt??sin2costdt
?12(t?tsintcost)?C?12(arcsinx?x1?x2)?C(30)令x?sect,t?[0,?2],dx?secttantdt,則
?1xx2?1dx??1secttantsecttantdt??dt?t?C=arccos1x?C(31)令x?4sect,t?[0,?2],dx?4secttantdt,則
2?x?16xdx??4tant4sect?4secttantdt?4?(sec2t?1)dt?4(tant?t)?C?4??x2?164???arccos??C?x2?16?4arccos41?C?3x??x(32)?dxdx1d(x?12)?1arctan(x?14x2?4x?5??(2x?1)2?4?4?)?C(x?1)2?14223d(x2?2x?17)?2d(33)?3x?1xx2?2x?17dx??2x2?2x?17
3d(x2?2??2x?17)dx321x?1x2?2x?17?2?(x?1)2?42?2ln(x?2x?17)?2arctan4?C(34)?dxdx1111x2?3x?4??(x?4)(x?1)?5?(x?4?x?1)dx?5lnx?4x?1?C
(35)?x?1x2?5x?6dx?12?d(x2?5x?6)7dxx2?5x?6?2?(x?2)(x?3)
?17?12ln(x2?5x?6)?2???x?2?1?127x?2x?3??dx?2ln(x?5x?6)?2lnx?3?C(36)?x3x2?4dx?12?x221?4?2x2?4dx?2???1?x2?4??dx
5
?12?dx2?2?d(x2?4)12x2?4?2x?2ln(x2?4)?C
(37)?x?arctan2xx2?1dx??xarctan2xx2?1dx??x2?1dx?1ln(x212?1)?3arctan3x?C
(38)
?1ex?e?xdx??1xarctanexe2x?1d(e)??C
(39)
?x1?x2?1dx??x(1?x2?1)(1?x2?1)(1?x2?1)dx??(x2?xx2?1)dx
??xx?1dx?x33??x2dx2122x3(x2?1)23?2?x?1d(x?1)?3?3?C(40)
?a?x(a?x)2a?xdx??a2?x2dx??a?xa2?x2dx?a?dxa2?x2??xa2?x2dx?aarcsinx1d(a2?x2)xa?2?a2?x2?aarcsina?a2?x2?C
1(41)
?1xx21?x2dx???1d(?1x)??d(1x(1)2?x?1(1)2?1x)x??2?1d((12121?x2x)?1)??2(x)?1?2x?C(1)2x?1(42)?sin2x1?sin2xdx?????1?1?111?sin2x??dx??dx??sin2x?dx1?1sin2xd(cotx?x??dcotx1)2?cot2x?x?22??1???cotx?2x?12arctan??cotx??2???C?2??
習題4-3
求以下不定積分(1)?xsin2xdx?12?xd(?cos2x)??x12cos2x?2?cos2xdx??x2cos2x?14sin2x?C
(2)?xe?xdx???xde?x??xe?x??e?xdx??xe?x?e?x?C
6
x3x3x3x3x2(3)?xlnxdx??lnxd()?lnx??d(lnx)?lnx??dx
2x3x3?lnx??C3333339(4)略.
(5)?x2cosxdx??x2dsinx?x2sinx??sinxdx2?x2sinx??2xsinxdx
?x2sinx??2xdcosx?x2sinx?2xcosx?2?cosxdx
?x2sinx?2xcosx?2sinx?C
(6)?arctan3x?1dx?xarctan3x?1??xdarctan3x?1?xarctan3x?1?1dx2?3x?1?xarctan3x?1?133x?1?C
(7)?e?xsin2xdx???sin2xde?x??e?xsin2x??e?xd(sin2x)
??e?xsin2x?2?cos2xd(e?x)??e?xsin2x?2e?xcos2x?2?e?xd(cos2x)??e?xsin2x?2e?xcos2x?4?e?xsin2xdx?x??e?x?esin2xdxsin2x?2e?xcos2x5?C(8)?x2arctanxdx??arctanxdx3x3x33?3arctanx??3darctanx
x31x3?3arctanx?3?1?x2dx?x33arctanx?1x3?x?x3?1?x2dx?x33arctanx?13x2?ln(1?x2)?C21?cos2x1x2(9)?xcosxdx??x2dx?2?(x?xcos2x)dx?14?2?xcos2xdx
?x24?14?xdsin2x?x24?14xsin2x?14?sin2xdx?x24?14xsin2x?18cos2x?C(10)?1xarcsinxdx?2?arcsinxdx?2xarcsinx?2?xdarcsinx
?2xarcsinx??11?xdx?2xarcsinx?21?x?C)?x2e3xdx?13?x2de3x?x2e3x3?23?xedx?x2e3x(113x3?29?xde3x
?x2e3x23x3?9xe?227e3x?C
(12)由于?coslnxdx?xcoslnx??xdcoslnx?xcoslnx??sinlnxdx
?xcoslnx?xsinlnx??xdsinlnx
7
?xcoslnx?xsinlnx??coslnxdx
于是?coslnxdx?xcoslnx?xsinlnx2?C
(13)?xcosxsin3xdx??xsin3xdsinx??xsin3xd????1?xdx2sin2x????2sin2x??sin2x??x1212sin2x?2?cscxdx??2(xcsc2x?cotx)?C(14)?ln(ex?1)exdx???ln(ex?1)de?x??e?xln(ex?1)??e?xdln(ex?1)?xx?xex??eln(e?1)??edxex?1dx??e?xln(ex?1)??ex?1ex?1?ex??e?xln(ex?1)??ex?1dx
??e?xln(ex?1)?x?ln(ex?1)?C
(15)?ln(x?1)(2?x)2dx??ln(x?1)d??1??2?x???ln(x?1)2?x??dx(2?x)(x?1)?ln(x?1)dxln(x?1)1?112?x??(2?x)(x?1)?2?x?3???2?x??x?1??dx?ln(x?1)2?x?13ln1?x2?x?C(16)?xf??(x)dx??xdf?(x)?xf?(x)??f?(x)dx?xf?(x)?f(x)?C
習題4-4
求以下不定積分
(1)?x3x?1dx??x3?1?1x?1dx??(x2?x?1)dx??1x?1dx
x3x2?3?2?x?lnx?1?C(2)?x5?x4?8x2?xx3?xdx??(x2?x?1)dx???8x3?xdx
??(x2?x?1)dx??(8x?43x?1?x?1)dx
x3?3?x22?x?8lnx?4lnx?1?3lnx?1?C2x2(3)??2x?13?x?2?3x?4(x?2)(x2?1)2dx??1x?2dx??x2?1dx??(x2?1)2dx?lnx?2?1d(x2?1)2?x2?1?2?1x?1dx?32?d(x2?1)42(x2?1)2??(x2?1)2dx?lnx?2?12ln(x2?1)?2arctanx?32x2(x2?1)?x2?1?2arctanx?C
(上式最終一個積分用積分表公式28)
8
(4)?6x2?11x?4x(x?1)2dx??[4x?2x?1?1(x?1)2]dx?4lnx?2lnx?1?1x?1?C?2lnx2(x?1)?1x?1?C(5)?xx1dx1x?x3?x2?x?1dx??(x?1)(x2?1)dx?2?x?1?12?x2?1dx?12lnx?1?14ln(x2?1)?12arctanx?C(6)?dx3?sin2x??2dx7?cos2xu?tanx?du1du3?4u2?3??(2
123u)?12tanx23arctan3?C
(7)令u?tanx2,可得2?dxsinx?cosx?1??1?u2du2u?du?ln1?u?C?ln1?tanx?C1?u2?1?u21?u2?1?u?12
(8)?dxt?33t2dt1321?31?x1?x?1?t?3?(t?1?1?t)dt?2t?t?lnt?1?C(9)?1?xx1?xdxt?1?x1?x?4t2??(112(t2?1)(t2?1)dtt?1?t?1?t2?1)dt
?lnt?1t?1?2arctant?C習題4-5
利用積分表計算以下不定積分:(1)由于?dx?2)5?4x?x2??d(x1?(x?2)2
在積分表中查得公式(73)
?dxx2?a2?ln(x?x2?a2)?C
現(xiàn)在a?1,x?x?2,于是
?dx5?4x?x2?ln(x?5?4x?x2?2)?C
(2)在積分表中查得公式(135)
?lnnxdx?x(lnx)n?n?lnn?1xdx
現(xiàn)在n?3,重復利用此公式三次,得
?ln3xdx?xln3x?3xln2x?6xlnx?6x?C.(3)在積分表中查得公式(28)
9
?(b?ax122)dx?x1dx?2?2b(ax?b)2bax2?b于是現(xiàn)在a?1,b?1,于是
?1(1?x2)2dx?x2(x2?1)?1?dx2x2?1?x2(x2?1)?arctanx?C(4)在積分表中查得公式(51)
?1xx2?adx?1aarccosax?C于是現(xiàn)在a?1,于是
?dx?arccos1xx2?1x?C(5)令t?x?1,由于
?x2x2?2xdx??x2(x?1)2?1dx??(t2?2t?1)t2?1dt
由積分表中公式(56)、(55)、(54)
?x2x2?a2dx?x2222a28(2x?a)x?a?8lnx?x2?a2?C
?xx2?a2dx?13(x2?a2)3?C?x2?a2dx?x22a2lnx?x2?a22x?a?2?C
于是
?x2x2?2xdx?x?18[2(x?1)2?a2)(x?1)2?a2?5a28lnx?1?(x?1)2?a2?13[(x?1)2?a2]3?C.(6)在積分表中查得公式(16)、(15)
?dxx2ax?b??ax?babx?2b?dxxax?b?dx2arctanax?bxax?b??b?b?C于是現(xiàn)在a?2,b??1,于是
?dx2x?1x22x?1?
2x?1dxx??x2x?1?x?2arctan2x?1?C(7)在積分表中查得公式(135)
?cosnxdx?1ncosn?1xsinx?n?1n?cosn?2xdx現(xiàn)在n?6,重復利用此公式三次,得
?cos6xdx?16cos5xsinx?53151x24?cosxsinx?24(4sin2x?2)?C.(8)在積分表中查得公式(128)
10
令
12?x?12sect?1?x1dx?12?sec2t?sectdt(x?)2?(1)222?12(tant?ln|sect?tant|)?C
?12(2x2?x?ln|2x?1?2x2?x|)?C
所以原式=x?xx2?x2?2?14ln2x?1?2x2?x?C(7)令x?tant
?lnx3dx?(1?x2)2?lntantsec3tsec2tdt??costlntantdt?sintlntant??sintsec2ttantdt?sintlntant??sectdt?sinttant?lnsect?tant?C?xlnx21?x2?lnx?1?x?C;(8)?ex(1?sinx)1?cosxdx??ex1?cosxdx+?exsinx1?cosxdx
x2exsinxcosx=?edx+22dx?exdtanx?extanxdx2cos2x?2x?2?222cos2?extanx2??extanx2dx??extanxx2dx?extan2?C;(9)?x2(1?x)100dx??(1?x)2?(1?x)?1(1?x)100dx
??[(1?x)?98?2(1?x)?99?(1?x)?100]dx
?197(1?x)?97?149(1?x)?98?199(1?x)?99?C;(10)?x21?x2arctanxdx?xarctanx?12ln(1?x2)?12(arctanx)2?Cxcos4x(11).
?2sin3xdx??18xcsc2x2?14cotx2?C三、設x?y(x?y)2,求
?dxx?3y.
3解:令u?x?y,得x?(x?u)u2,x?uu4?3u2u2?1,dx?(u2?1)2du,16
u3?3u
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- LS/T 1235-2024糧食倉房分類分級
- 2025-2030年中國高硬脆材料加工行業(yè)開拓第二增長曲線戰(zhàn)略制定與實施研究報告
- 2025-2030年中國全鋼子午胎行業(yè)開拓第二增長曲線戰(zhàn)略制定與實施研究報告
- 在2024年歲末年初安全生產(chǎn)工作會議上的講話
- 2020-2025年中國物流自動化行業(yè)市場前景預測及投資方向研究報告
- 廣東省深圳市鹽田區(qū)2023-2024學年五年級上學期英語期末試卷
- 五年級數(shù)學(小數(shù)除法)計算題專項練習及答案匯編
- 應急移動雷達塔 5米玻璃鋼接閃桿 CMCE電場補償器避雷針
- 快易冷儲罐知識培訓課件
- 2025年人教版英語五年級下冊教學進度安排表
- 2024-2025學年北京房山區(qū)初三(上)期末英語試卷
- 2024年三年級英語教學工作總結(修改)
- 咖啡廳店面轉讓協(xié)議書
- 期末(試題)-2024-2025學年人教PEP版英語六年級上冊
- 鮮奶購銷合同模板
- 申論公務員考試試題與參考答案(2024年)
- DB4101T 9.1-2023 反恐怖防范管理規(guī)范 第1部分:通則
- 2024-2030年中國公安信息化建設與IT應用行業(yè)競爭策略及投資模式分析報告
- 2024年加油站場地出租協(xié)議
- 南寧房地產(chǎn)市場月報2024年08月
- 2024年金融理財-擔保公司考試近5年真題附答案
評論
0/150
提交評論