版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在直角坐標(biāo)系中,已知點P(3,4),現(xiàn)將點P作如下變換:①將點P先向左平移4個單位,再向下平移3個單位得到點P1;②作點P關(guān)于y軸的對稱點P2;③將點P繞原點O按逆時針方向旋轉(zhuǎn)90°得到點P3,則P1,P2,P3的坐標(biāo)分別是()A.P1(0,0),P2(3,﹣4),P3(﹣4,3)B.P1(﹣1,1),P2(﹣3,4),P3(4,3)C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)2.如圖,在平面直角坐標(biāo)系xOy中,點A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無滑動滾動,每旋轉(zhuǎn)60°為滾動1次,那么當(dāng)正六邊形ABCDEF滾動2017次時,點F的坐標(biāo)是()A.(2017,0) B.(2017,)C.(2018,) D.(2018,0)3.如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有()A.2個 B.3個 C.4個 D.5個4.如圖,共有12個大不相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分.現(xiàn)從其余的小正方形中任取一個涂上陰影,則能構(gòu)成這個正方體的表面展開圖的概率是()A. B. C. D.5.2017年人口普查顯示,河南某市戶籍人口約為2536000人,則該市戶籍人口數(shù)據(jù)用科學(xué)記數(shù)法可表示為()A.2.536×104人 B.2.536×105人 C.2.536×106人 D.2.536×107人6.下列各點中,在二次函數(shù)的圖象上的是()A. B. C. D.7.如圖1是某生活小區(qū)的音樂噴泉,水流在各個方向上沿形狀相同的拋物線路徑落下,其中一個噴水管噴水的最大高度為3m,此時距噴水管的水平距離為1m,在如圖2所示的坐標(biāo)系中,該噴水管水流噴出的高度(m)與水平距離(m)之間的函數(shù)關(guān)系式是()A. B.C. D.8.如圖,在△ABC中,D、E分別是邊AB、AC的中點,若BC=6,則DE的長為()A.2 B.3 C.4 D.69.不等式3x<2(x+2)的解是()A.x>2 B.x<2 C.x>4 D.x<410.在下列四個新能源汽車車標(biāo)的設(shè)計圖中,屬于中心對稱圖形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.在直角坐標(biāo)系中,坐標(biāo)軸上到點P(﹣3,﹣4)的距離等于5的點的坐標(biāo)是.12.如圖,直線m∥n,△ABC為等腰直角三角形,∠BAC=90°,則∠1=度.13.如圖,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得到Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得到線段ED,分別以O(shè)、E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分的面積是__.14.如圖,在直角坐標(biāo)平面xOy中,點A坐標(biāo)為,,,AB與x軸交于點C,那么AC:BC的值為______.15.已知,如圖,△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,則AC=.16.因式分解:x2y-4y3=________.17.在一個不透明的袋子中裝有除顏色外其他均相同的3個紅球和2個白球,從中任意摸出一個球,則摸出白球的概率是_____.三、解答題(共7小題,滿分69分)18.(10分)解分式方程:=19.(5分)如圖,在長方形OABC中,O為平面直角坐標(biāo)系的原點,點A坐標(biāo)為(a,0),點C的坐標(biāo)為(0,b),且a、b滿足+|b﹣6|=0,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的線路移動.a(chǎn)=,b=,點B的坐標(biāo)為;當(dāng)點P移動4秒時,請指出點P的位置,并求出點P的坐標(biāo);在移動過程中,當(dāng)點P到x軸的距離為5個單位長度時,求點P移動的時間.20.(8分)(1)如圖,四邊形為正方形,,那么與相等嗎?為什么?(2)如圖,在中,,,為邊的中點,于點,交于,求的值(3)如圖,中,,為邊的中點,于點,交于,若,,求.21.(10分)如圖,∠BAO=90°,AB=8,動點P在射線AO上,以PA為半徑的半圓P交射線AO于另一點C,CD∥BP交半圓P于另一點D,BE∥AO交射線PD于點E,EF⊥AO于點F,連接BD,設(shè)AP=m.(1)求證:∠BDP=90°.(2)若m=4,求BE的長.(3)在點P的整個運動過程中.①當(dāng)AF=3CF時,求出所有符合條件的m的值.②當(dāng)tan∠DBE=時,直接寫出△CDP與△BDP面積比.22.(10分)如圖,以AD為直徑的⊙O交AB于C點,BD的延長線交⊙O于E點,連CE交AD于F點,若AC=BC.(1)求證:;(2)若,求tan∠CED的值.23.(12分)拋物線y=x2+bx+c經(jīng)過點A、B、C,已知A(﹣1,0),C(0,﹣3).求拋物線的解析式;如圖1,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.如圖2,將拋物線平移,使其頂點E與原點O重合,直線y=kx+2(k>0)與拋物線相交于點P、Q(點P在左邊),過點P作x軸平行線交拋物線于點H,當(dāng)k發(fā)生改變時,請說明直線QH過定點,并求定點坐標(biāo).24.(14分)計算:﹣4cos45°+()﹣1+|﹣2|.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
把點P的橫坐標(biāo)減4,縱坐標(biāo)減3可得P1的坐標(biāo);讓點P的縱坐標(biāo)不變,橫坐標(biāo)為原料坐標(biāo)的相反數(shù)可得P2的坐標(biāo);讓點P的縱坐標(biāo)的相反數(shù)為P3的橫坐標(biāo),橫坐標(biāo)為P3的縱坐標(biāo)即可.【詳解】∵點P(3,4),將點P先向左平移4個單位,再向下平移3個單位得到點P1,∴P1的坐標(biāo)為(﹣1,1).∵點P關(guān)于y軸的對稱點是P2,∴P2(﹣3,4).∵將點P繞原點O按逆時針方向旋轉(zhuǎn)90°得到點P3,∴P3(﹣4,3).故選D.【點睛】本題考查了坐標(biāo)與圖形的變化;用到的知識點為:左右平移只改變點的橫坐標(biāo),左減右加,上下平移只改變點的縱坐標(biāo),上加下減;兩點關(guān)于y軸對稱,縱坐標(biāo)不變,橫坐標(biāo)互為相反數(shù);(a,b)繞原點O按逆時針方向旋轉(zhuǎn)90°得到的點的坐標(biāo)為(﹣b,a).2、C【解析】
本題是規(guī)律型:點的坐標(biāo);坐標(biāo)與圖形變化-旋轉(zhuǎn),正六邊形ABCDEF一共有6條邊,即6次一循環(huán);因為2017÷6=336余1,點F滾動1次時的橫坐標(biāo)為2,縱坐標(biāo)為,點F滾動7次時的橫坐標(biāo)為8,縱坐標(biāo)為,所以點F滾動2107次時的縱坐標(biāo)與相同,橫坐標(biāo)的次數(shù)加1,由此即可解決問題.【詳解】.解:∵正六邊形ABCDEF一共有6條邊,即6次一循環(huán);∴2017÷6=336余1,∴點F滾動1次時的橫坐標(biāo)為2,縱坐標(biāo)為,點F滾動7次時的橫坐標(biāo)為8,縱坐標(biāo)為,∴點F滾動2107次時的縱坐標(biāo)與相同,橫坐標(biāo)的次數(shù)加1,∴點F滾動2107次時的橫坐標(biāo)為2017+1=2018,縱坐標(biāo)為,∴點F滾動2107次時的坐標(biāo)為(2018,),故選C.【點睛】本題考查坐標(biāo)與圖形的變化,規(guī)律型:點的坐標(biāo),解題關(guān)鍵是學(xué)會從特殊到一般的探究方法,是中考??碱}型.3、C【解析】
試題分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正確;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正確;∵AB=AH,∠BAE=45°,∴△ABH不是等邊三角形,∴AB≠BH,∴即AB≠HF,故⑤錯誤;綜上所述,結(jié)論正確的是①②③④共4個.故選C.【點睛】考點:1、矩形的性質(zhì);2、全等三角形的判定與性質(zhì);3、角平分線的性質(zhì);4、等腰三角形的判定與性質(zhì)4、D【解析】
由正方體表面展開圖的形狀可知,此正方體還缺一個上蓋,故應(yīng)在圖中四塊相連的空白正方形中選一塊,再根據(jù)概率公式解答即可.【詳解】因為共有12個大小相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分,所以剩下7個小正方形.在其余的7個小正方形中任取一個涂上陰影,能構(gòu)成這個正方體的表面展開圖的小正方形有4個,因此先從其余的小正方形中任取一個涂上陰影,能構(gòu)成這個正方體的表面展開圖的概率是.故選D.【點睛】本題考查了概率公式,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比,掌握概率公式是本題的關(guān)鍵.5、C【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值≥1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】2536000人=2.536×106人.故選C.【點睛】本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.6、D【解析】
將各選項的點逐一代入即可判斷.【詳解】解:當(dāng)x=1時,y=-1,故點不在二次函數(shù)的圖象;當(dāng)x=2時,y=-4,故點和點不在二次函數(shù)的圖象;當(dāng)x=-2時,y=-4,故點在二次函數(shù)的圖象;故答案為:D.【點睛】本題考查了判斷一個點是否在二次函數(shù)圖象上,解題的關(guān)鍵是將點代入函數(shù)解析式.7、D【解析】
根據(jù)圖象可設(shè)二次函數(shù)的頂點式,再將點(0,0)代入即可.【詳解】解:根據(jù)圖象,設(shè)函數(shù)解析式為由圖象可知,頂點為(1,3)∴,將點(0,0)代入得解得∴故答案為:D.【點睛】本題考查了是根據(jù)實際拋物線形,求函數(shù)解析式,解題的關(guān)鍵是正確設(shè)出函數(shù)解析式.8、B【解析】
根據(jù)三角形的中位線等于第三邊的一半進行計算即可.【詳解】∵D、E分別是△ABC邊AB、AC的中點,∴DE是△ABC的中位線,∵BC=6,∴DE=12故選B.【點睛】本題考查了三角形的中位線定理,中位線是三角形中的一條重要線段,由于它的性質(zhì)與線段的中點及平行線緊密相連,因此,它在幾何圖形的計算及證明中有著廣泛的應(yīng)用.9、D【解析】
不等式先展開再移項即可解答.【詳解】解:不等式3x<2(x+2),展開得:3x<2x+4,移項得:3x-2x<4,解之得:x<4.故答案選D.【點睛】本題考查了解一元一次不等式,解題的關(guān)鍵是熟練的掌握解一元一次不等式的步驟.10、D【解析】
根據(jù)中心對稱圖形的概念求解.【詳解】解:A.不是中心對稱圖形,本選項錯誤;B.不是中心對稱圖形,本選項錯誤;C.不是中心對稱圖形,本選項錯誤;D.是中心對稱圖形,本選項正確.故選D.【點睛】本題主要考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題(共7小題,每小題3分,滿分21分)11、(0,0)或(0,﹣8)或(﹣6,0)【解析】
由P(﹣3,﹣4)可知,P到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經(jīng)過原點分別與x軸、y軸交于另外一點,共有三個.【詳解】解:∵P(﹣3,﹣4)到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經(jīng)過原點且分別交x軸、y軸于另外兩點(如圖所示),∴故坐標(biāo)軸上到P點距離等于5的點有三個:(0,0)或(0,﹣8)或(﹣6,0).故答案是:(0,0)或(0,﹣8)或(﹣6,0).12、1.【解析】試題分析:∵△ABC為等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m∥n,∴∠1=1°;故答案為1.考點:等腰直角三角形;平行線的性質(zhì).13、.【解析】
作DH⊥AE于H,根據(jù)勾股定理求出AB,根據(jù)陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積,利用扇形面積公式計算即可.【詳解】解:如圖作DH⊥AE于H,AOB=,OA=2,OB=1,AB=,由旋轉(zhuǎn)的性質(zhì)可知OE=OB=1,DE=EF=AB=,可得△DHE≌△BOA,DH=OB=1,陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積==,故答案:.【點睛】本題主要考查扇形的計算公式,正確表示出陰影部分的面積是計算的關(guān)鍵.14、【解析】
過點A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.先證△ADO∽△OEB,再根據(jù)∠OAB=30°求出三角形的相似比,得到OD:OE=2∶,根據(jù)平行線分線段成比例得到AC:BC=OD:OE=2∶=【詳解】解:如圖所示:過點A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.∵∠OAB=30°,∠ADE=90°,∠DEB=90°∴∠DOA+∠BOE=90°,∠OBE+∠BOE=90°∴∠DOA=∠OBE∴△ADO∽△OEB∵∠OAB=30°,∠AOB=90°,∴OA∶OB=∵點A坐標(biāo)為(3,2)∴AD=3,OD=2∵△ADO∽△OEB∴∴OE∵OC∥AD∥BE根據(jù)平行線分線段成比例得:AC:BC=OD:OE=2∶=故答案為.【點睛】本題考查三角形相似的證明以及平行線分線段成比例.15、1【解析】試題分析:根據(jù)DE∥FG∥BC可得△ADE∽△AFG∽ABC,根據(jù)題意可得EG:AC=DF:AB=2:6=1:3,根據(jù)EG=3,則AC=1.考點:三角形相似的應(yīng)用.16、y(x++2y)(x-2y)【解析】
首先提公因式,再利用平方差進行分解即可.【詳解】原式.故答案是:y(x+2y)(x-2y).【點睛】考查了提公因式法與公式法分解因式,要求靈活使用各種方法對多項式進行因式分解,一般來說,如果可以先提取公因式的要先提取公因式,再考慮運用公式法分解.17、【解析】
根據(jù)隨機事件概率大小的求法,找準(zhǔn)兩點:①符合條件的情況數(shù)目;②全部情況的總數(shù).二者的比值就是其發(fā)生的概率的大小.【詳解】解:∵在一個不透明的袋子中裝有除顏色外其他均相同的3個紅球和2個白球,∴從中任意摸出一個球,則摸出白球的概率是.故答案為:.【點睛】本題考查概率的求法與運用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=三、解答題(共7小題,滿分69分)18、x=1【解析】
分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】方程兩邊都乘以x(x﹣2),得:x=1(x﹣2),解得:x=1,檢驗:x=1時,x(x﹣2)=1×1=1≠0,則分式方程的解為x=1.【點睛】本題考查了解分式方程,利用了轉(zhuǎn)化的思想,解分式方程注意要檢驗.19、(1)4,6,(4,6);(2)點P在線段CB上,點P的坐標(biāo)是(2,6);(3)點P移動的時間是2.5秒或5.5秒.【解析】試題分析:(1)根據(jù)可以求得的值,根據(jù)長方形的性質(zhì),可以求得點的坐標(biāo);
(2)根據(jù)題意點從原點出發(fā),以每秒2個單位長度的速度沿著的線路移動,可以得到當(dāng)點移動4秒時,點的位置和點的坐標(biāo);
(3)由題意可以得到符合要求的有兩種情況,分別求出兩種情況下點移動的時間即可.試題解析:(1)∵a、b滿足∴a?4=0,b?6=0,解得a=4,b=6,∴點B的坐標(biāo)是(4,6),故答案是:4,6,(4,6);(2)∵點P從原點出發(fā),以每秒2個單位長度的速度沿著O?C?B?A?O的線路移動,∴2×4=8,∵OA=4,OC=6,∴當(dāng)點P移動4秒時,在線段CB上,離點C的距離是:8?6=2,即當(dāng)點P移動4秒時,此時點P在線段CB上,離點C的距離是2個單位長度,點P的坐標(biāo)是(2,6);(3)由題意可得,在移動過程中,當(dāng)點P到x軸的距離為5個單位長度時,存在兩種情況,第一種情況,當(dāng)點P在OC上時,點P移動的時間是:5÷2=2.5秒,第二種情況,當(dāng)點P在BA上時,點P移動的時間是:(6+4+1)÷2=5.5秒,故在移動過程中,當(dāng)點P到x軸的距離為5個單位長度時,點P移動的時間是2.5秒或5.5秒.20、(1)相等,理由見解析;(2)2;(3).【解析】
(1)先判斷出AB=AD,再利用同角的余角相等,判斷出∠ABF=∠DAE,進而得出△ABF≌△DAE,即可得出結(jié)論;
(2)構(gòu)造出正方形,同(1)的方法得出△ABD≌△CBG,進而得出CG=AB,再判斷出△AFB∽△CFG,即可得出結(jié)論;
(3)先構(gòu)造出矩形,同(1)的方法得,∠BAD=∠CBP,進而判斷出△ABD∽△BCP,即可求出CP,再同(2)的方法判斷出△CFP∽△AFB,建立方程即可得出結(jié)論.【詳解】解:(1)BF=AE,理由:
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=∠D=90°,
∴∠BAE+∠DAE=90°,
∵AE⊥BF,
∴∠BAE+∠ABF=90°,
∴∠ABF=∠DAE,
在△ABF和△DAE中,∴△ABF≌△DAE,
∴BF=AE,(2)如圖2,
過點A作AM∥BC,過點C作CM∥AB,兩線相交于M,延長BF交CM于G,
∴四邊形ABCM是平行四邊形,
∵∠ABC=90°,
∴?ABCM是矩形,
∵AB=BC,
∴矩形ABCM是正方形,
∴AB=BC=CM,
同(1)的方法得,△ABD≌△BCG,
∴CG=BD,
∵點D是BC中點,
∴BD=BC=CM,
∴CG=CM=AB,
∵AB∥CM,
∴△AFB∽△CFG,∴(3)如圖3,在Rt△ABC中,AB=3,BC=4,
∴AC=5,
∵點D是BC中點,
∴BD=BC=2,
過點A作AN∥BC,過點C作CN∥AB,兩線相交于N,延長BF交CN于P,
∴四邊形ABCN是平行四邊形,
∵∠ABC=90°,∴?ABCN是矩形,
同(1)的方法得,∠BAD=∠CBP,
∵∠ABD=∠BCP=90°,
∴△ABD∽△BCP,∴∴∴CP=同(2)的方法,△CFP∽△AFB,∴∴∴CF=.【點睛】本題是四邊形綜合題,主要考查了正方形的性質(zhì)和判定,平行四邊形的判定,矩形的判定和性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),構(gòu)造出(1)題的圖形,是解本題的關(guān)鍵.21、(1)詳見解析;(2)的長為1;(3)m的值為或;與面積比為或.【解析】
由知,再由知、,據(jù)此可得,證≌即可得;
易知四邊形ABEF是矩形,設(shè),可得,證≌得,在中,由,列方程求解可得答案;
分點C在AF的左側(cè)和右側(cè)兩種情況求解:左側(cè)時由知、、,在中,由可得關(guān)于m的方程,解之可得;右側(cè)時,由知、、,利用勾股定理求解可得.作于點G,延長GD交BE于點H,由≌知,據(jù)此可得,再分點D在矩形內(nèi)部和外部的情況求解可得.【詳解】如圖1,,,,、,,,≌,.,,,,,四邊形ABEF是矩形,設(shè),則,,,,,≌,,≌,,在中,,即,解得:,的長為1.如圖1,當(dāng)點C在AF的左側(cè)時,,則,,,,在中,由可得,解得:負(fù)值舍去;如圖2,當(dāng)點C在AF的右側(cè)時,,,,,,在中,由可得,解得:負(fù)值舍去;綜上,m的值為或;如圖3,過點D作于點G,延長GD交BE于點H,≌,,又,且,,當(dāng)點D在矩形ABEF的內(nèi)部時,由可設(shè)、,則,,則;如圖4,當(dāng)點D在矩形ABEF的外部時,由可設(shè)、,則,,則,綜上,與面積比為或.【點睛】本題考查了四邊形的綜合問題,解題的關(guān)鍵是掌握矩形的判定與性質(zhì)、全等三角形的判定和性質(zhì)及勾股定理、三角形的面積等知識點.22、(1)見解析;(2)tan∠CED=【解析】
(1)欲證明,只要證明即可;(2)由,可得,設(shè)FO=2a,OC=3a,則DF=a,DE=1.5a,AD=DB=6a,由,可得BD?BE=BC?BA,設(shè)AC=BC=x,則有,由此求出AC、CD即可解決問題.【詳解】(1)證明:如下圖,連接AE,∵AD是直徑,∴,∴DC⊥AB,∵AC=CB,∴DA=DB,∴∠CDA=∠CDB,∵,,∴∠BDC=∠EAC,∵∠AEC=∠ADC,∴∠EAC=∠AEC,∴;(2)解:如下圖,連接OC,∵AO=OD,AC=CB,∴OC∥BD,∴,∴,設(shè)FO=2a,OC=3a,則DF=a,DE=1.5a,AD=DB=6a,∵∠BAD=∠BEC,∠B=∠B,∴,∴BD?BE=BC?BA,設(shè)AC=BC=x,則有,∴,∴,∴,∴.【點睛】本題屬于圓的綜合題,涉及到三角形的相似,解直角三角形等相關(guān)考點,熟練掌握三角形相似的判定及解直角三角形等相關(guān)內(nèi)容是解決本題的關(guān)鍵.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024學(xué)校校園安全培訓(xùn)與護校合同3篇
- 2024年度教育機構(gòu)擔(dān)保合同投標(biāo)委托服務(wù)協(xié)議3篇
- 2024年二零二四年度紙箱環(huán)保材料研發(fā)、生產(chǎn)與銷售合同3篇
- 2024年小微企業(yè)擔(dān)保人反擔(dān)保合同標(biāo)準(zhǔn)范本3篇
- 2024年新材料產(chǎn)業(yè)有限合伙企業(yè)合伙協(xié)議范本3篇
- 2024年度紙箱銷售與售后服務(wù)保障合同3篇
- 2024年員工臨時資金周轉(zhuǎn)及風(fēng)險控制合同3篇
- 2024年度橋梁漆工施工及防腐保護合同范本3篇
- 2024年建筑項目鋼筋工承包合同
- 2024年度新型地磚材料研發(fā)與應(yīng)用合作協(xié)議3篇
- 膠體的穩(wěn)定性
- 常見急救知識培訓(xùn)課件
- 紅色國風(fēng)喜迎元旦介紹宣傳PPT教學(xué)課件
- 領(lǐng)導(dǎo)干部廉政知識競賽題庫及答案
- 降低銳器盒不規(guī)腎內(nèi)科品管圈課件
- 《了凡四訓(xùn)》課件
- 2ttk7d6.0gd空調(diào)裝置使用維護說明書法補充
- 重大火災(zāi)隱患判定培訓(xùn)課件
- 經(jīng)濟思想史課后習(xí)題答案
- 大學(xué)生就業(yè)與創(chuàng)業(yè)指導(dǎo)課件
- 如何理解歐盟MDR臨床評價要求
評論
0/150
提交評論