初中北師版數(shù)學(xué)知識點總結(jié)_第1頁
初中北師版數(shù)學(xué)知識點總結(jié)_第2頁
初中北師版數(shù)學(xué)知識點總結(jié)_第3頁
初中北師版數(shù)學(xué)知識點總結(jié)_第4頁
初中北師版數(shù)學(xué)知識點總結(jié)_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

初中北師版數(shù)學(xué)知識點總結(jié)1、正數(shù)和負(fù)數(shù)的有關(guān)概念

(1)正數(shù):比0大的數(shù)叫做正數(shù);

負(fù)數(shù):比0小的數(shù)叫做負(fù)數(shù);

0既不是正數(shù),也不是負(fù)數(shù)。

(2)正數(shù)和負(fù)數(shù)表示相反意義的量。

2、有理數(shù)的概念及分類

3、有關(guān)數(shù)軸

(1)數(shù)軸的三要素:原點、正方向、單位長度。數(shù)軸是一條直線。

(2)全部有理數(shù)都可以用數(shù)軸上的點來表示,但數(shù)軸上的點不肯定都是有理數(shù)。

(3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點在原點的右側(cè),表示負(fù)數(shù)的點在原點的左側(cè)。

(2)相反數(shù):符號不同、肯定值相等的兩個數(shù)互為相反數(shù)。

若a、b互為相反數(shù),則a+b=0;

相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)。

(3)肯定值最小的數(shù)是0;肯定值是本身的數(shù)是非負(fù)數(shù)。

4、任何數(shù)的肯定值是非負(fù)數(shù)。

最小的正整數(shù)是1,最大的負(fù)整數(shù)是-1。

5、利用肯定值比擬大小

兩個正數(shù)比擬:肯定值大的那個數(shù)大;

兩個負(fù)數(shù)比擬:先算出它們的肯定值,肯定值大的反而小。

6、有理數(shù)加法

(1)符號一樣的兩數(shù)相加:和的符號與兩個加數(shù)的符號全都,和的肯定值等于兩個加數(shù)肯定值之和.

(2)符號相反的兩數(shù)相加:當(dāng)兩個加數(shù)肯定值不等時,和的符號與肯定值較大的加數(shù)的符號一樣,和的肯定值等于加數(shù)中較大的肯定值減去較小的肯定值;當(dāng)兩個加數(shù)肯定值相等時,兩個加數(shù)互為相反數(shù),和為零.

(3)一個數(shù)同零相加,仍得這個數(shù).

加法的交換律:a+b=b+a

加法的結(jié)合律:(a+b)+c=a+(b+c)

7、有理數(shù)減法:

減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

8、在把有理數(shù)加減混合運算統(tǒng)一為最簡的形式,負(fù)數(shù)前面的加號可以省略不寫.

例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12-25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負(fù)25、負(fù)17的和.”

9、有理數(shù)的乘法

兩個數(shù)相乘,同號得正,異號得負(fù),再把肯定值相乘;任何數(shù)與0相乘都得0。

第一步:確定積的符號其次步:肯定值相乘

10、乘積的符號確實定

幾個有理數(shù)相乘,因數(shù)都不為0時,積的符號由負(fù)因數(shù)的個數(shù)確定:當(dāng)負(fù)因數(shù)有奇數(shù)個時,積為負(fù);

當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正。幾個有理數(shù)相乘,有一個因數(shù)為零,積就為零。

11、倒數(shù):乘積為1的兩個數(shù)互為倒數(shù),0沒有倒數(shù)。

正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(互為倒數(shù)的兩個數(shù)符號肯定一樣)

倒數(shù)是本身的只有1和-1。

初中北師版數(shù)學(xué)學(xué)問點總結(jié)2

1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

2、菱形的性質(zhì):⑴矩形具有平行四邊形的一切性質(zhì);

⑵菱形的四條邊都相等;

⑶菱形的兩條對角線相互垂直,并且每一條對角線平分一組對角。

⑷菱形是軸對稱圖形。

提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對角線相互垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對角線與邊之間的關(guān)系,即邊長的平方等于對角線一半的平方和。

3、因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

4、因式分解要素:①結(jié)果必需是整式②結(jié)果必需是積的形式③結(jié)果是等式④因式分解與整式乘法的關(guān)系:m(a+b+c)

5、公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

6、公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②一樣字母取最低次冪③系數(shù)最大公約數(shù)與一樣字母取最低次冪的積就是這個多項式各項的公因式。

7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫成積的形式。

8、平方根表示法:一個非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號a。a叫被開方數(shù)。

9、中被開方數(shù)的取值范圍:被開方數(shù)a≥0

10、平方根性質(zhì):①一個正數(shù)的平方根有兩個,它們互為相反數(shù)。②0的平方根是它本身0。③負(fù)數(shù)沒有平方根開平方;求一個數(shù)的平方根的運算,叫做開平方。

11、平方根與算術(shù)平方根區(qū)分:定義不同、表示方法不同、個數(shù)不同、取值范圍不同。

12、聯(lián)系:二者之間存在著附屬關(guān)系;存在條件一樣;0的算術(shù)平方根與平方根都是0

13、含根號式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負(fù)的平方根。

14、求正數(shù)a的算術(shù)平方根的方法;

完全平方數(shù)類型:①想誰的平方是數(shù)a。②所以a的平方根是多少。③用式子表示。

求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。

初中北師版數(shù)學(xué)學(xué)問點總結(jié)3

1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。

2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。

3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數(shù)化為1……(檢驗方程的解)。

4.列一元一次方程解應(yīng)用題:

(1)讀題分析法:多用于“和,差,倍,分問題”

認(rèn)真讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,削減,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最終利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。

(2)畫圖分析法:多用于“行程問題”

利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的表達,認(rèn)真讀題,依照題意畫出有關(guān)圖形,使圖形各局部具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最終利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的根底。

11.列方程解應(yīng)用題的常用公式:

(1)行程問題:距離=速度·時間;

(2)工程問題:工作量=工效·工時;

(3)比率問題:局部=全體·比率;

(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;

(5)商品價格問題:售價=定價·折·,利潤=售價—本錢,;

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,

S正方形=a2,S環(huán)形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h。

本章內(nèi)容是代數(shù)學(xué)的核心,也是全部代數(shù)方程的根底。豐富多彩的問題情境和解決問題的歡樂很簡單激起學(xué)生對數(shù)學(xué)的樂趣,所以要留意引導(dǎo)學(xué)生從身邊的問題討論起,進展有效的數(shù)學(xué)活動和合作溝通,讓學(xué)生在主動學(xué)習(xí)、探究學(xué)習(xí)的過程中獲得學(xué)問,提升力量,體會數(shù)學(xué)思想方法。

初中北師版數(shù)學(xué)學(xué)問點總結(jié)4

三角形的學(xué)問點

1、三角形:由不在同始終線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2、三角形的分類

3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

6、角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

7、高線、中線、角平分線的意義和做法

8、三角形的穩(wěn)定性:三角形的外形是固定的,三角形的這共性質(zhì)叫三角形的穩(wěn)定性。

9、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°

推論1直角三角形的兩個銳角互余

推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角和

推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半

10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

11、三角形外角的性質(zhì)

(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

(2)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和;

(3)三角形的一個外角大于與它不相鄰的任一內(nèi)角;

(4)三角形的外角和是360°。

四邊形(含多邊形)學(xué)問點、概念總結(jié)

一、平行四邊形的定義、性質(zhì)及判定

1、兩組對邊平行的四邊形是平行四邊形。

2、性質(zhì):

(1)平行四邊形的對邊相等且平行

(2)平行四邊形的對角相等,鄰角互補

(3)平行四邊形的對角線相互平分

3、判定:

(1)兩組對邊分別平行的四邊形是平行四邊形

(2)兩組對邊分別相等的四邊形是平行四邊形

(3)一組對邊平行且相等的四邊形是平行四邊形

(4)兩組對角分別相等的四邊形是平行四邊形

(5)對角線相互平分的四邊形是平行四邊形

4、對稱性:平行四邊形是中心對稱圖形

二、矩形的定義、性質(zhì)及判定

1、定義:有一個角是直角的平行四邊形叫做矩形

2、性質(zhì):矩形的四個角都是直角,矩形的對角線相等

3、判定:

(1)有一個角是直角的平行四邊形叫做矩形

(2)有三個角是直角的四邊形是矩形

(3)兩條對角線相等的平行四邊形是矩形

4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。

三、菱形的定義、性質(zhì)及判定

1、定義:有一組鄰邊相等的平行四邊形叫做菱形

(1)菱形的四條邊都相等

(2)菱形的對角線相互垂直,并且每一條對角線平分一組對角

(3)菱形被兩條對角線分成四個全等的直角三角形

(4)菱形的面積等于兩條對角線長的積的一半

2、s菱=爭6(n、6分別為對角線長)

3、判定:

(1)有一組鄰邊相等的平行四邊形叫做菱形

(2)四條邊都相等的四邊形是菱形

(3)對角線相互垂直的平行四邊形是菱形

4、對稱性:菱形是軸對稱圖形也是中心對稱圖形

四、正方形定義、性質(zhì)及判定

1、定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形

2、性質(zhì):

(1)正方形四個角都是直角,四條邊都相等

(2)正方形的兩條對角線相等,并且相互垂直平分,每條對角線平分一組對角

(3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形

(4)正方形的對角線與邊的夾角是45°

(5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形

3、判定:

(1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等

(2)先判定一個四邊形是菱形,再判定出有一個角是直角

4、對稱性:正方形是軸對稱圖形也是中心對稱圖形

五、梯形的定義、等腰梯形的性質(zhì)及判定

1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等

3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形

4、對稱性:等腰梯形是軸對稱圖形

六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。

七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。

八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。

九、多邊形

1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

4、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。

6、正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫做正多邊形。

7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一局部完全掩蓋,叫做用多邊形掩蓋平面。

8、公式與性質(zhì)

多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°

9、多邊形外角和定理:

(1)n邊形外角和等于n·180°-(n-2)·180°=360°

(2)邊形的每個內(nèi)角與它相鄰的外角是鄰補角,所以n邊形內(nèi)角和加外角和等于n·180°

10、多邊形對角線的條數(shù):

(1)從n邊形的一個頂點動身可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形

(2)n邊形共有n(n-3)/2條對角線

圓學(xué)問點、概念總結(jié)

1、不在同始終線上的三點確定一個圓。

2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

推論2圓的兩條平行弦所夾的弧相等

3、圓是以圓心為對稱中心的中心對稱圖形

4、圓是定點的距離等于定長的點的集合

5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

6、圓的外部可以看作是圓心的距離大于半徑的點的集合

7、同圓或等圓的半徑相等

8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

10、推論在同圓或等圓中,假如兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

11、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

12、①直線L和⊙O相交d

②直線L和⊙O相切d=r

③直線L和⊙O相離d>r

13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑

15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

18、圓的外切四邊形的兩組對邊的和相等,外角等于內(nèi)對角

19、假如兩個圓相切,那么切點肯定在連心線上

20、①兩圓外離d>R+r

②兩圓外切d=R+r

③兩圓相交R-rr)

④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

21、定理:相交兩圓的連心線垂直平分兩圓的公共弦

22、定理:把圓分成n(n≥3):

(1)依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

(2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

23、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

24、正n邊形的每個內(nèi)角都等于(n-2)×180°/n

25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

27、正三角形面積√3a/4a表示邊長

28、假如在一個頂點四周有k個正n邊形的.角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

29、弧長計算公式:L=n兀R/180

30

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論