版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023高二下數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)集合,則()A. B. C. D.2.在區(qū)間上的最大值是()A. B. C. D.3.若命題是真命題,則實數(shù)a的取值范圍是A. B.C. D.4.已知橢圓的兩個焦點為,且,弦過點,則的周長為()A. B. C. D.5.已知直線、經(jīng)過圓的圓心,則的最小值是A.9 B.8 C.4 D.26.已知函數(shù),且,則不等式的解集為A. B. C. D.7.正弦函數(shù)是奇函數(shù),是正弦函數(shù),因此是奇函數(shù),以上推理()A.結(jié)論正確 B.大前提不正確 C.小前提不正確 D.大前提、小前提、結(jié)論都不正確8.一名法官在審理一起珍寶盜竊案時,四名嫌疑人甲、乙、丙、丁的供詞如下,甲說:“罪犯在乙、丙、丁三人之中”;乙說:“我沒有作案,是丙偷的”;丙說:“甲、乙兩人中有一人是小偷”;丁說:乙說的是事實”.經(jīng)過調(diào)查核實,四人中有兩人說的是真話,另外兩人說的是假話,且這四人中只有一人是罪犯,由此可判斷罪犯是()A.甲B.乙C.丙D.丁9.已知滿足,其中,則的最小值為()A. B. C. D.110.已知二項式,且,則()A. B. C. D.11.若復(fù)數(shù)是虛數(shù)單位),則的共軛復(fù)數(shù)()A. B. C. D.12.已知函數(shù),當(dāng)時,不等式恒成立,則實數(shù)的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.總決賽采用7場4勝制,2018年總決賽兩支球隊分別為勇士和騎士,假設(shè)每場比賽勇士獲勝的概率為0.7,騎士獲勝的概率為0.3,且每場比賽的結(jié)果相互獨立,則恰好5場比賽決出總冠軍的概率為__________.14.連續(xù)3次拋擲一枚質(zhì)地均勻的硬幣,在至少有一次出現(xiàn)正面向上的條件下,恰有一次出現(xiàn)反面向上的概率為.15.從集合{1,2,…,30}中取出五個不同的數(shù)組成單調(diào)遞增的等差數(shù)列,則所有符合條件的不同的數(shù)列個數(shù)是______.16.設(shè)向量,,若與垂直,則的值為_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)數(shù)列的前項和為.已知,.(1)若,證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的前項和.18.(12分)已知過拋物線y2=2pxp>0的焦點,斜率為22的直線交拋物線于(1)求拋物線的方程;(2)O為坐標(biāo)原點,C為拋物線上一點,若OC=OA+λ19.(12分)已知矩陣,向量.(1)求的特征值、和特征向量、;(2)求的值.20.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)在區(qū)間上的最大值和最小值.21.(12分)已知,函數(shù).(1)若,求的值;(2)若,求的單調(diào)遞增區(qū)間.22.(10分)已知且,(1)求的解析式;(2)判斷的奇偶性,并判斷當(dāng)時的單調(diào)性;(3)若是上的增函數(shù)且,求m的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
解不等式得集合A,B,再由交集定義求解即可.【詳解】由已知所以,故選C.【點睛】本題主要考查了集合的交集運算,屬于基礎(chǔ)題.2、D【解析】
對求導(dǎo),判斷函數(shù)在區(qū)間上的單調(diào)性,即可求出最大值?!驹斀狻克栽趩握{(diào)遞增,在單調(diào)遞減,故選D【點睛】本題考查利用導(dǎo)函數(shù)求函數(shù)的最值,屬于基礎(chǔ)題。3、B【解析】因為命題是真命題,即不等式對恒成立,即恒成立,當(dāng)a+2=0時,不符合題意,故有,即,解得,則實數(shù)a的取值范圍是.故選:B.4、D【解析】
求得橢圓的a,b,c,由橢圓的定義可得△ABF2的周長為|AB|+|AF2|+|BF2|=4a,計算即可得到所求值.【詳解】由題意可得橢圓+=1的b=5,c=4,a==,由橢圓的定義可得|AF1|+|AF2|=|BF1|+|BF2|=2a,即有△ABF2的周長為|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=4a=4.故選D.【點睛】本題考查三角形的周長的求法,注意運用橢圓的定義和方程,定義法解題是關(guān)鍵,屬于基礎(chǔ)題.5、A【解析】
由圓的一般方程得圓的標(biāo)準(zhǔn)方程為,所以圓心坐標(biāo)為,由直線過圓心,將圓心坐標(biāo)代入得,所以,當(dāng)且僅當(dāng)時,即時,等號成立,所以最小值為1【詳解】圓化成標(biāo)準(zhǔn)方程,得,圓的圓心為,半徑.直線經(jīng)過圓心C,,即,因此,,、,,當(dāng)且僅當(dāng)時等號成立.由此可得當(dāng),即且時,的最小值為1.故選A.【點睛】若圓的一般方程為,則圓心坐標(biāo)為,半徑6、C【解析】
由,可分別考慮分段函數(shù)的每一段取值為的情況,即可求解出的值;然后再分別利用每一段函數(shù)去考慮的情況.【詳解】函數(shù),可知時,,所以,可得解得.不等式即不等式,可得:或,解得:或,即故選:C.【點睛】利用分段函數(shù)求解參數(shù)取值時,需要對分段函數(shù)的每一段都進行考慮;并且在考慮每一段分段函數(shù)的時候,注意定義域.7、C【解析】分析:根據(jù)題意,分析所給推理的三段論,找出大前提,小前提,結(jié)論,再判斷正誤即可得到答案.詳解:根據(jù)題意,該推理的大前提:正弦函數(shù)是奇函數(shù),正確;小前提是:是正弦函數(shù),因為該函數(shù)不是正弦函數(shù),故錯誤;結(jié)論:是奇函數(shù),,故錯誤.故選:C.點睛:本題考查演繹推理的基本方法,關(guān)鍵是理解演繹推理的定義以及三段論的形式.8、B【解析】∵乙、丁兩人的觀點一致,∴乙、丁兩人的供詞應(yīng)該是同真或同假;若乙、丁兩人說的是真話,則甲、丙兩人說的是假話,由乙說真話推出丙是罪犯的結(jié)論;由甲說假話,推出乙、丙、丁三人不是罪犯的結(jié)論,矛盾;∴乙、丁兩人說的是假話,而甲、丙兩人說的是真話;由甲、丙的供述內(nèi)容可以斷定乙是罪犯.9、C【解析】
令,利用導(dǎo)數(shù)可求得單調(diào)性,確定,進而得到結(jié)果.【詳解】令,則.,由得:;由得:,在上單調(diào)遞減,在上單調(diào)遞增,,即的最小值為.故選:.【點睛】本題考查函數(shù)最值的求解問題,關(guān)鍵是能夠利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,進而確定最值點.10、D【解析】
把二項式化為,求得其展開式的通項為,求得,再令,求得,進而即可求解.【詳解】由題意,二項式展開式的通項為,令,可得,即,解得,所以二項式為,則,令,即,則,所以.【點睛】本題主要考查了二項式定理的應(yīng)用,其中解答中把二項式,利用二項式通項,合理賦值求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.11、D【解析】
根據(jù)復(fù)數(shù)除法運算法則可化簡復(fù)數(shù)得,由共軛復(fù)數(shù)定義可得結(jié)果.【詳解】本題正確選項:【點睛】本題考查共軛復(fù)數(shù)的求解,關(guān)鍵是能夠利用復(fù)數(shù)的除法運算法則化簡復(fù)數(shù),屬于基礎(chǔ)題.12、A【解析】
令,由可知在上單調(diào)遞增,從而可得在上恒成立;通過分離變量可得,令,利用導(dǎo)數(shù)可求得,從而可得,解不等式求得結(jié)果.【詳解】由且得:令,可知在上單調(diào)遞增在上恒成立,即:令,則時,,單調(diào)遞減;時,,單調(diào)遞增,解得:本題正確選項:【點睛】本題考查根據(jù)函數(shù)的單調(diào)性求解參數(shù)范圍的問題,關(guān)鍵是能夠?qū)⒁阎P(guān)系式變形為符合單調(diào)性的形式,從而通過構(gòu)造函數(shù)將問題轉(zhuǎn)化為導(dǎo)數(shù)大于等于零恒成立的問題;解決恒成立問題常用的方法為分離變量,將問題轉(zhuǎn)化為參數(shù)與函數(shù)最值之間的大小關(guān)系比較的問題,屬于常考題型.二、填空題:本題共4小題,每小題5分,共20分。13、0.3108【解析】分析:設(shè)“勇士以比分4:1獲勝”為事件,“第場比賽取勝”記作事件,由能求出勇士隊以比分4:1獲勝的概率.設(shè)“騎士以比分4:1獲勝”為事件,“第場比賽取勝”記作事件,由能求出騎士隊以比分4:1獲勝的概率.則恰好5場比賽決出總冠軍的概率為.詳解:設(shè)“勇士以比分4:1獲勝”為事件,“第場比賽取勝”記作事件,由能求出勇士隊以比分4:1獲勝的概率.則設(shè)“騎士以比分4:1獲勝”為事件,“第場比賽取勝”記作事件,由能求出騎士隊以比分4:1獲勝的概率.則則恰好5場比賽決出總冠軍的概率為即答案為0.3108.點睛:本題主要考查了次獨立重復(fù)試驗中恰好發(fā)生次的概率,同時考查了分析問題的能力和計算能力,屬于中檔題.14、【解析】試題分析:至少有一次正面向上的概率為,恰有一次出現(xiàn)反面向上的概率為,那么滿足題意的概率為.考點:古典概型與排列組合.15、2【解析】
根據(jù)題意,設(shè)滿足條件的一個等差數(shù)列首項為a1,公差為d,d∈N*.確定d的可能取值為1,2,3,【詳解】根據(jù)題意,設(shè)滿足條件的一個等差數(shù)列首項為a1,公差為d,必有d∈則a5=a則d的可能取值為1,2,3,…,1.對于給定的d,a1=a5-4d≤30-4d,當(dāng)a1分別取1,2,3,(如:d=1時,a1≤26,當(dāng)a1分別取1,2,3,可得遞增等差數(shù)列26個:1,2,3,4,5;2,3,…,6;…;26,21,…,30,其它同理).當(dāng)d取1,2,3,…,1時,可得符合要求的等差數(shù)列的個數(shù)為:12故答案為:2.【點睛】本題主要考查了合情推理,涉及等差數(shù)列的性質(zhì),關(guān)鍵是確定d的取值范圍,屬于難題.16、【解析】與垂直三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)由題意可得,再由等差數(shù)列的定義即可得證;(2)求得,即,再由數(shù)列的分組求和,結(jié)合等差數(shù)列和等比數(shù)列的求和公式,化簡可得所求和.【詳解】(1)因為,所以可化為,又,所以是首項為2,公差為2的等差數(shù)列.(2)由(1),知,所以,所以.【點睛】本題主要考查等差數(shù)列的定義、通項公式、等差(等比)數(shù)列的前項和公式,以及數(shù)列的分組求和法的應(yīng)用.18、(1)y2=8x.(2)λ=0,或λ=2.【解析】
試題分析:第一問求拋物線的焦點弦長問題可直接利用焦半徑公式,先寫出直線的方程,再與拋物線的方程聯(lián)立方程組,設(shè)而不求,利用根與系數(shù)關(guān)系得出x1+x2,然后利用焦半徑公式得出焦點弦長公式AB=x1+試題解析:(1)直線AB的方程是y=22(x-p2),與y2=2px聯(lián)立,消去y得8x2-10px+2p由根與系數(shù)的關(guān)系得x1+x2=54p.由拋物線定義得|AB|=54(2)由(1)得x2-5x+4=0,得x1=1,x2=4,從而A(1,-22),B(4,42).設(shè)OC=(x3,y3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),又y=8x3,即[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.【點睛】求弦長問題,一般采用設(shè)而不求聯(lián)立方程組,借助根與系數(shù)關(guān)系,利用弦長公式去求;但是遇到拋物線的焦點弦長問題時,可直接利用焦半徑公式,使用焦點弦長公式AB=x1+x2+p,求出弦長.遇到與向量有關(guān)的問題,一般采用坐標(biāo)法去解決,根據(jù)聯(lián)立方程組解出的19、(1)當(dāng)時,解得,當(dāng)時,解得;(2)見解析.【解析】分析:(1)先根據(jù)特征值的定義列出特征多項式,令解方程可得特征值,再由特征值列出方程組即可解得相應(yīng)的特征向量;(2)根據(jù)矩陣A的特征多項式求出矩陣A的所有特征值為3和-1,然后根據(jù)特征向量線性表示出向量,利用矩陣的乘法法則求出,從而即可求出答案.詳解(1)矩陣的特征多項式為,令,解得,,當(dāng)時,解得;當(dāng)時,解得.(2)令,得,求得.所以點睛:考查學(xué)生會利用二階矩陣的乘法法則進行運算,會求矩陣的特征值和特征向量.20、(1)單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為.(2)最大值為6,,最小值為【解析】
(1)求出定義域和導(dǎo)數(shù),由導(dǎo)數(shù)大于零,可得增區(qū)間,由導(dǎo)數(shù)小于零,可得減區(qū)間。(2)由(1)可得函數(shù)在區(qū)間上的單調(diào)性,由單調(diào)性即可求出極值,與端點值進行比較,即可得到函數(shù)在區(qū)間上的最大值和最小值?!驹斀狻浚?)函數(shù)的定義域為,由得令得,當(dāng)和時,;當(dāng)時,,因此,的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間.(2)由(1),列表得單調(diào)遞增極大值單調(diào)遞減極小值單調(diào)遞增因為,,,所以在區(qū)間上的最大值為6,,最小值為.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和最值問題,考查學(xué)生的基本運算能力,屬于基礎(chǔ)題。21、(1);(2)【解析】
(1)由得,解出即可(2)用三角函數(shù)的和差公式和二倍角公式將化為,然后求出即可【詳解】(1)又,.(2),,,的單調(diào)遞增區(qū)間為【點睛】解決三角函數(shù)性質(zhì)的有關(guān)問題時應(yīng)先將函數(shù)化為基本型.22、(1);(2)見解析;(3)【解析】
(1)利用對數(shù)函數(shù)的性質(zhì),結(jié)合換元法,令則,求出的表達(dá)式即可;(2)結(jié)合(1)中的解析式,利用函數(shù)奇偶性的定義判斷函數(shù)的定義域和與的關(guān)系;利用指數(shù)函數(shù)的單調(diào)性和簡單復(fù)合函數(shù)單調(diào)性的判斷法則即可求解;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版場監(jiān)督管理局合同示范文本(公共安全監(jiān)控)4篇
- 專業(yè)化苗木搬運合作合同范本版B版
- 2025年度草花種植基地農(nóng)業(yè)廢棄物處理合同4篇
- 2024離婚雙方的社會關(guān)系及人際網(wǎng)絡(luò)處理合同
- 2024年04月華夏銀行總行社會招考筆試歷年參考題庫附帶答案詳解
- 2025年度電子商務(wù)策劃與運營合同范本4篇
- 2024院長任期內(nèi)薪酬福利與教育教學(xué)改革合同范本3篇
- 專用場地四年承包合同樣本版B版
- 2024年鋼筋結(jié)構(gòu)施工合同
- 2025年度拆除工程安全防護材料供應(yīng)協(xié)議3篇
- 公路工程施工現(xiàn)場安全檢查手冊
- 公司組織架構(gòu)圖(可編輯模版)
- 1汽輪機跳閘事故演練
- 陜西省銅川市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細(xì)
- 禮品(禮金)上交登記臺賬
- 北師大版七年級數(shù)學(xué)上冊教案(全冊完整版)教學(xué)設(shè)計含教學(xué)反思
- 2023高中物理步步高大一輪 第五章 第1講 萬有引力定律及應(yīng)用
- 青少年軟件編程(Scratch)練習(xí)題及答案
- 浙江省公務(wù)員考試面試真題答案及解析精選
- 系統(tǒng)性紅斑狼瘡-第九版內(nèi)科學(xué)
- 全統(tǒng)定額工程量計算規(guī)則1994
評論
0/150
提交評論