擴大40年期電源電壓范圍從-300uA到3A無電阻電流檢測解決方案_第1頁
擴大40年期電源電壓范圍從-300uA到3A無電阻電流檢測解決方案_第2頁
擴大40年期電源電壓范圍從-300uA到3A無電阻電流檢測解決方案_第3頁
擴大40年期電源電壓范圍從-300uA到3A無電阻電流檢測解決方案_第4頁
擴大40年期電源電壓范圍從-300uA到3A無電阻電流檢測解決方案_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第第頁擴大40年期電源電壓范圍,從<300uA到3A無電阻電流檢測解決方案測量系統(tǒng)中的電流是監(jiān)測系統(tǒng)狀態(tài)的一種基本而有效的工具。隨著科技發(fā)展,電子或電氣系統(tǒng)在性能提升的同時,物理尺寸大大縮小,并降低了功耗和成本。每個電子設備都在監(jiān)測自己的健康和狀態(tài),而這些診斷提供了管理系統(tǒng)所需的重要信息,甚至決定了其未來的設計升級。

系統(tǒng)中越來越需要測量大范圍電流,從微小電流一直到幾安培電流。例如,在以下情況下,確定系統(tǒng)中高動態(tài)范圍的電流流動或消耗情況:

睡眠/非活躍電流,以確定除正常運行外的總體負載性能和估算電池/電源功率。ATE/測試環(huán)境需要處理從微小/低微安培級電流到安培級電流,這就需要進行研發(fā)或生產(chǎn)級的測試。生產(chǎn)車間環(huán)境,以發(fā)現(xiàn)生產(chǎn)問題(積聚在IC下的焊劑、不必要的焊料短路或開路),以及正常的操作功能測試。工業(yè)設備監(jiān)測,開啟和關閉期間的功耗可顯示設備的健康狀況,例如,監(jiān)測設備的正常電流和泄漏電流,以確定其隨時間推移的磨損情況。

在高達80V的高電壓電平(共模電平)應用中,由外部的簡單電流檢測放大器(CSA)(但為了使結構達到精度和準確性要求,集成電路的設計比較復雜)和檢測電阻器組成的方案可以解決電流測量時的大多數(shù)問題。電流檢測放大器目前具有出色的準確度和精度,滿足實現(xiàn)微安級電流的要求,同時保持更好的信噪比(SNR)性能,從而提供系統(tǒng)設計所需的測量分辨率。

然而,為設計人員選擇優(yōu)化的CSA并不是一件容易的事情。有一些權衡因素需要考慮:

可用的電源

最小可檢測電流(轉化為器件的最小輸入失調(diào)電壓(VOS))

最大可檢測電流(轉化為最大輸入檢測電壓(VSENSE))

RSENSE上允許的功耗

由于差分電壓范圍由電流檢測放大器的選擇來設定,因此增加RSENSE值可以提高較低電流值的測量精度,但在較高的電流下功耗較高,這可能是不可接受的。另外,檢測電流的范圍也有所降低(IMIN:IMAX)。

降低RSENSE值更有利,因為它減少了電阻的功耗,增大了檢測電流范圍。降低RSENSE值可降低信噪比(可以通過計算平均值,取平均輸入噪聲來改善信噪比)。應當注意的是,在這種情況下,設備的偏移會影響測量的精度。通常,會在室溫下進行校準,以提高系統(tǒng)精度,通過增加某些系統(tǒng)的測試成本來消除失調(diào)電壓。

此外,輸入差分電壓范圍(VSENSE)取決于電源電壓或內(nèi)部/外部基準電壓和增益:

在任何實現(xiàn)高電流范圍的應用中,目的都是在既定的精度預算下最大限度地擴大動態(tài)范圍,這一般通過以下公式來估算:

大多數(shù)CSA的VSENSE-RANGE通常是100mV,輸入失調(diào)電壓約為10μV。請注意,如果選擇VSENSE_MIN作為10xVOS系數(shù),則在未校準系統(tǒng)中,最多可得出30年±10%的誤差。同樣,如果選擇100xVOS,則可以達到±1%的誤差范圍,但動態(tài)范圍會縮減到20年。因此,在動態(tài)范圍和精度之間存在一個權衡:收緊精度預算會減少VSENSE_MIN所決定的動態(tài)范圍,反之亦然。

有一點需要注意,在CSA+RSENSE系統(tǒng)中,RSENSE(容差和溫度系數(shù))通常是系統(tǒng)總精度的瓶頸。與電量計、帶集成芯片電阻器的CSA、使用運算的差分放大器的分立式器件實現(xiàn)等其它替代方案相比,它簡單、可靠且成本合理,仍然是行業(yè)中監(jiān)控/測量系統(tǒng)電流的有效做法。也有更高級別容差和溫度系數(shù)檢測電阻,只是價格比較高。應用在溫度范圍內(nèi)的總誤差預算需要與RSENSE產(chǎn)生的誤差相當。

無電阻檢測解決方案

對于需要測量從幾百微安到幾安培電流的更高動態(tài)范圍應用,下方圖1所示的基于ADI集成式電流檢測器件(U1)是非常有用、有效的解決方案。該解決方案滿足以下條件:

集成式檢測元件(無電阻)

超過40年的電流檢測動態(tài)范圍

電流輸出功能(與160ΩLOAD一起提供0-1V的VOUT,與所有ADC/微控制器電流輸入實現(xiàn)方案兼容)。

圖1:帶有集成電流檢測元件的2.5V至5.5V電流檢測系統(tǒng)

代替外部檢流電阻,在VDD輸入和負載(LD)輸出之間配置集成檢測器件,能夠測量100uA至3.3A的系統(tǒng)負載電流(ILOAD)。增益為1/500的內(nèi)部增益塊提供輸出電流ISH,即I_LOAD/500。在ISH電流輸出和接地間連接一個160Ω電阻,可得到0V至1V的VISH電壓輸出。

在負載電流為3A時,檢測元件裝置上VDD和LD之間的壓降約為60mV(曲線圖1),相當于僅有180mW的功耗,而在較低的電流值下,觀察到的檢測100μA范圍的總誤差在10%左右(曲線圖2)。該方案在較高電流負載下功耗較小,在較低電流水平下仍能保持較好的誤差預算,優(yōu)于傳統(tǒng)檢測電路。因此,需要更大電流檢測范圍(最高可達3A)的應用可以從這個方案中受益。曲線圖1:內(nèi)部檢測元件上的壓降與負載電流的關系

曲線圖2:不同溫度下ISH輸出的增益誤差與負載電流的關系

具有擴展線路/輸入電壓的無電阻檢測方案

圖2是圖1的輸入電壓范圍擴展,其中U1的電源電壓現(xiàn)在可以接受更高的線路電壓,可高達6V至36V。齊納二極管(D1)將VDD和PFET(M1)柵極之間的電壓維持在5.6V。高壓線路的大部分被M1吸收,M1的源電壓鉗位在與VDD輸入電壓相差大約4V-4.5V的水平,從而將U1的工作電壓(VDD-VSS)維持在正常工作范圍內(nèi)(曲線圖3)。然后,這個M1的源電壓為M2PFET的柵極電壓提供偏置。M2PFET源電壓處于VSS(U1)+VTH(M2)的水平,確保U1ISH輸出在可接受的電壓水平內(nèi)。ISH電流輸出和R1相對于接地端產(chǎn)生0至1V的輸出電壓。

圖2:帶有集成電流檢測元件的6V至36V電流檢測系統(tǒng)曲

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論