




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway1
UNLOCKINGTHEPOTENTIALOFCOLLABORATIVEAI–
ONTHESOCIO-TECHNICALCHALLENGESOF
FEDERATEDMACHINELEARNING
ResearchPaper
TobiasMüller,TechnicalUniversityofMunich,SchoolofComputation,Informationand
Technology,DepartmentofComputerScience,GermanyandSAPSE,Germany,tobias1.mueller@tum.de
MilenaZahn,TechnicalUniversityofMunich,SchoolofComputation,Informationand
Technology,DepartmentofComputerScience,GermanyandSAPSE,Germany,milena.zahn@tum.de
FlorianMatthes,TechnicalUniversityofMunich,SchoolofComputation,Informationand
Technology,DepartmentofComputerScience,Germany,matthes@tum.de
Abstract
ThedisruptivepotentialofAIsystemsrootsintheemergenceofbigdata.Yet,asignificantportionisscatteredandlockedindatasilos,leavingitspotentialuntapped.FederatedMachineLearningisanovelAIparadigmenablingthecreationofAImodelsfromdecentralized,potentiallysiloeddata.Hence,FederatedMachineLearningcouldtechnicallyopendatasilosandthereforeunlockeconomicpotential.However,thisrequirescollaborationbetweenmultiplepartiesowningdatasilos.Settingupcollaborativebusinessmodelsiscomplexandoftenareasonforfailure.CurrentliteraturelacksguidelinesonwhichaspectsmustbeconsideredtosuccessfullyrealizecollaborativeAIprojects.ThisresearchinvestigatesthechallengesofprevailingcollaborativebusinessmodelsanddistinctaspectsofFederatedMachineLearning.Throughasystematicliteraturereview,focusgroup,andexpertinterviews,weprovideasystemizedcollectionofsocio-technicalchallengesandanextendedBusinessModelCanvasfortheinitialviabilityassessmentofcollaborativeAIprojects.
Keywords:FederatedMachineLearning,CollaborativeDataProcessing,BusinessModel,Alliances
1Introduction
ArtificialIntelligence(AI)hadanimmenseeconomicimpactinthelastcoupleofyears.In2021alone,themarketofAI-basedservicesincludingsoftware,hardwareandservicesexceeded500$billionwithafive-yearcompoundannualgrowthrateof17.5%(ForradellasandGallastegui,2021).Thepotentialprofitabilityraiseiscurrentlyestimatedbyanaverageof38%,whichimpliesaneconomicimpactof$14trillionuntil20351.Unmistakably,theusageofAIenablesnew,unprecedentedbusinessmodelswithamonumentalimpactontheindustry.Themainenablerforthisdisruptivenewmarketistheemergenceofbigdata,whichformsthefundamentalbasisforAIsystems.Eventhoughvastamountsofdataisfreelyavailable,aconsiderableamountoftheworld’sdataisscattered,storedandlockedupindecentralizedIoTdevicesanddatasilos.Naturally,thesiloeddataishardlyaccessible,leavingalargeportionofalreadygenerateddata,andthereforeeconomicpotential,largelyuntapped.Theemergence
1/fr-fr/_acnmedia/36dc7f76eab444cab6a7f44017cc3997.pdf
Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway2
Socio-TechnicalChallengesofCollaborativeAI
ofdatasilosisstrengthenedbydataprotectionlawsandregulationssuchastheGeneralDataProtectionRegulation(GDPR),CaliforniaConsumerPrivacyAct,CyberSecurityLawandtheGeneralPrinciplesoftheCivilLaw.Theseregulationsjustifiablyaimtoprotecttheprivacyofindividualsandthereforerestrictdirectdatasharingbetweendifferentparties(Lietal.,2022).Thisprotectionofprivacyisanimportantpursuitbutleadstomoredatasilosandthereforeunusedeconomicpotential.
FederatedMachineLearning(FedML)introducedbyMcMahanetal.(2016)isanovelmachinelearning(ML)technologywiththepotentialofbuildingpredictionmodelsofdecentralizedandthereforesiloeddatasets.Incontrasttotraditional,centralizedML,FedMLsystemsinitiallytrainaglobalMLmodelwhichisthendistributedtoallparticipants.Then,eachparticipantindividuallytrainsthemodellocallyontheirowndataset.Theclientssolelyreturntheupdategradientresultingfromthelocaltraining.Throughthismodel-to-dataapproach,thedataneverleavestheclient’sdevice,butstillenablesthedevelopmentofajointMLmodel.Thus,FedMLenablestappingthepotentialofbigdatawithoutprivacyleakage.
FedMLtechnicallyhasthepotentialtoleveragesiloeddatawhilestillpreservingtheintellectualproperty(IP)andprivacyofeachindividuals’dataset.Hence,FedMLenablestheusageofcurrentlyuntappeddataandthereforebringsthepotentialtobethecatalystfornovel,disruptivebusinessmodelinnovationandlockingunprecedentedvaluefromsiloeddata.However,thisrequiresthecollaborationofmultiplepartieswhichownthesedatasilos.Hence,acollaborativebusinessmodelisneededasaframeworkforhowvaluecanbecreated,anddifferentpartiescanbeincentivizedforparticipatinginsuchacollaborativenetwork.Settingupcollaborativebusinessmodelsiscomplexandapotentialreasonforfailure.Thecurrentliteraturelacksguidelinesfordecision-makersonwhichaspectsmustbeconsideredforthesuccessfulrealizationofcollaborativeAIprojects.
Thisworkaimstowardsclosingthisknowledgegap.Morespecifically,weinvestigatethechallengesofprevailingcollaborativebusinessmodelsthroughasystematicliteraturereviewandidentifydistinctaspectsofcollaborativeFedMLprojectsbyconductingafocusgroupinterviewandmultipleexpertinterviews.Weworktowardsasystemizedcollectionofsocio-technicalchallengesandaneasilyconsumablebusinessmodelcanvas(BMC)toaiddecision-makersintheinitialviabilityassessmentofcollaborativeAIprojects.Summarized,weaimtoanswerthefollowingresearchquestions(RQs):RQ1:Whatarethegeneralchallengesofcollaborativebusinessmodels?
RQ2:Whataretheaspectsofinter-organizationalFedMLbusinessmodelsinrelationtoprevailingcollaborativebusinessmodels?
RQ3:Whichaspectsandattributesshouldbeconsideredforinter-organizationalFedMLprojectsandhowcanthesebestructuredintoanextendedBMC?
Toaddresstheseresearchquestions,wefirstdescribethetheoreticalbackgroundofourstudybyintroducingFederatedMachineLearningandprovidingbackgroundinformationoncollaborativebusinessmodels(section2).Following,weelaborateonourtripartiteresearchmethodology,whichconsistsofasystematicliteraturereview,in-depthfocusgroupinterviews,andsemi-structuredexpertinterviews(section3).Subsequently,wepresenttheresultsofourresearchincludingasystemizedoverviewofchallengesforcollaborativebusinessmodels,astructuredlistofdistinctsocio-technicalaspectsforFedMLprojectsandaproposalforacorrespondingextendedBMC(section4).Finally,wediscussourworkbyreflectingtheunderlyingresearchproblemandresearchgaps.Thediscussionisfollowedbyasummaryofourcontributions,answerstotheRQsandlimitationsofourwork.Ourstudyconcludeswithanoutlineoffutureresearch(section5).
2TheoreticalBackground
Thefollowingsectionpresentsthetheoreticalbackgroundofourstudy.Wefirstdescribethemotivation,terminologies,andthebasicconceptofFedMLasoriginallyproposedbyMcMahanetal.(2016).Subsequently,weprovidegeneralbackgroundinformationonbusinessmodelstoestablishacommon
Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway3
Socio-TechnicalChallengesofCollaborativeAI
understandingforthisstudy.Finally,weelaborateoncollaborativebusinessmodelsandcorrespondingextensionsoftheBMCbyOsterwalderandPigneur(2010).
2.1FederatedMachineLearning
AclassicMLapproachrequiresthecollaboratingparticipantstoassembletheirdatasetsinacentrallocationandtrainauniqueMLmodelMSUM,exposingthedatatoeachotherandthecentralserver.TheparticipantstherebyrisklosingtheirdatasovereigntyandIP,whichinhibitscompaniestocollaborateandsharedata(Schomakersetal.,2020).IntroducedbyMcMahanetal.(2016),FedMLcounteractstheneedofsharingdatasetsthroughamodel-to-dataapproach.AsillustratedinFigure1,aglobalMLmodelischosen,whichisdistributedamongstallclients.Theclientstrainthemodellocallyontheirindividualdataset.Theupdategradientsaresentbacktotheserverandusedtoimprovetheglobalmodel.Thereby,FedMLenablesdataownerstotrainajointmodelMFEDwithouttheneedtodisclosetheirdata.
Figure1.OneiterationoftheFederatedMachineLearningprocess(source:ownwork).
IntheoriginalFedAVGimplementationbyMcMahanetal.(2016)themodelislearnedthrough
stochasticgradientdescent(SGD),whereeachpartykcomputestheaveragegradientgk=7Fk(wt)
Thepartysubmitsthegradientstothecentralserver,whichaggregatestheupdatesfromallpartiesas:
onitslocaldatankatthecurrentmodelwtanditeratesmultipletimesovertheupdatewk←wk?刀gk.
wt+1←wt?/=1w1
w1←w?刀gk,?k
WhileclassicFedMLoperatesonaclient-serverarchitecture,alternativesthatdonotrelyonacentralorchestratingserverarealsopossible.Forinstance,partiescanexchangemodelupdatesbyestablishing
apeer-to-peernetwork,increasingthesecurityoftheprocessattheexpenseofconsumingmorebandwidthandresourcesforencryption(Royetal.,2019).
Moreover,thedistributionoffeaturesandsamplesacrossdatasetsmaynotbehomogeneous.Horizontal
FederatedLearning(HFL)referstothesetupinwhichalldatasets{D1}fromtheKpartiescontain
differentsamplesthatsharethesamefeaturespace.Ifinstead,thesamesamplesarepresentinall
datasets,butfeaturespacesaredisjoint,thesetupisknownasVerticalFederatedLearning(VFL).
Consideringthehighheterogeneityofdata,especiallyifspreadacrossdifferentorganizations,some
authorshaveproposedtoovercometheproblemofsparseoverlappingdatasetsthroughFederated
TransferLearning(FTL)(Liuetal.,2020).Inthisscheme,partiesmayselectsamplesfortrainingthat
minimizesthedistancebetweentheirdistributions(instance-basedFTL)orlearnacommonfeature
spacecollaboratively(feature-basedFTL).Alternatively,partiesmaystartbyusingpre-trainedmodels
orbylearningmodelsfromalignedsamplestoinfermissingfeaturesandlabels(model-basedFTL).
Finally,itisimportanttonotethattheperformancesvSUMandvFEDoftherespectivecentralizedand
vFED<6andwillbestronglydependentonthecharacteristicsoftheparticularapplication.
federatedmodels,mightdifferconsiderably.Thisperformancegap6ischaracterizedbyvSUM?
Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway4
Socio-TechnicalChallengesofCollaborativeAI
Consequently,FedMLintroducesapotentialtrade-offbetweenthelossofperformancerespecttothecentralizedsetupandtheprivacyguaranteesprovidedbythedistributedapproach(Yangetal.,2019).
2.2CollaborativeBusinessModels
Abusinessmodeldescribesessentialaspectsofanorganization,explaininghowtheorganizationcreates,delivers,andcapturesvalue(OsterwalderandPigneur,2010).Intheacademicliterature,thedefinitionofthetermisfragmented,andnoconsistentboundariesareestablished.Nevertheless,itcanbestatedthatabusinessmodelprovidesanorganizationalandstrategicdesignforimplementingabusinessopportunity(George,2011).
Inaddition,OsterwalderandPigneur(2010)arguethatasharedunderstandingofthebusinessmodeliscrucialtoitscreationandsuccess.Therefore,creatinganddiscussingabusinessmodelrequiresasimple,relevant,andintuitivelyunderstandableconceptwithoutoversimplifyingthecomplexityofhowtheorganizationworks.TheBMCbyOsterwalderandPigneur(2010)isatooloftenusedinpracticetopresentabusinessmodelstructuredinninecomponents.
Businessmodelsarenotonlyusedforasinglecompanybutcanalsosupportassessingthefeasibilityandprofitabilityofcollaborationsacrosscompanies(KristensenandUcler,2016).Thetrendofaninterconnectedanddynamicenvironmentencouragesorganizationstocollaborateinter-organizationallyandco-createvalue(DiirrandCappelli,2018).Inliterature,nounifiedframeworkexistsforcollaborations.Still,someapproachesutilizeOsterwalderandPigneur(2010)generalapproachofabusinessmodelasabasisandcustomizeittosetahigherfocusonspecifics(KristensenandUcler,2016).Forexample,EppingerandKamprath(2011)highlighttheimportanceofapartnerandcustomernetworkinpersonalizedmedicinebymodifyingthecanvascomponentsandaddingnewones,likeintellectualpropertystrategy.Theapproachesintheliteraturereachfrommodificationsofbusinessmodelcomponents(e.g.,EppingerandKamprath(2011)orKristensenandUcler(2016)),toconfigurationoptionsofthebusinessmodel(e.g.,Curtis(2021)orManandLuvison(2019)).However,thecustomizationsaremainlyapplication-oriented,tailoredtotheprojecttosuittheneedsandcaptureuniquefeaturesinfluencingthebusinessmodelandthusdecisivefortheproject'ssuccess.
3Methodology
Thisresearchwasstructuredintothreedistinctparts.Afterasystematicliteraturereview(SLR)togainanoverviewofthechallengesofcollaborativebusinessmodels,weorganizedanin-depthfocusgroupinterviewtoexplorethenovelfieldofinter-organizationalFedMLbusinessmodels.Bythis,weaimedtoaugmentthefindingsfromtheSLRandidentifydistinctchallengesofbusinessmodelsforcollaborativeFedMLprojects.Sincefocusgroupsarecharacterizedbytheirhomogeneousgroupdemographic,wepursuedmoregenericallyapplicableresultsbyconductingadditionalsemi-structuredexpertinterviews.Theresearchtimelineisdisplayedinfigure2.Thefollowingsubsectionswillgointomoredetailabouttheusedresearchmethodologies.
Figure2.ResearchTimeline
Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway5
Socio-TechnicalChallengesofCollaborativeAI
3.1SystematicLiteratureReview
Toassessandidentifythechallengesofprevailingcollaborativebusinessmodels,weconductedasystematicliteraturereview.Bythis,weintendtoextractfundamentalsandcriticalattributesofbusinessmodelsforinter-organizationalcollaborations,whichwillbecollected,structured,andsummarized.WefollowedasearchstrategybyZhangetal.(2011)toidentifythemostrelevantliterature.Hence,thesearchisdividedintobaseliteraturesearch,mainsearch,andbackwardsearch.
TheBaseLiteratureconsistsof13papersincludingfivepublicationsonbusinessmodeltheoryandeightoncollaborativeprojectswhichwereknownbytheauthorspriortothesearch.Basedontheinitialliteraturecorpus,wefocusedonfindingkeywordsrelatedtointer-organizationalbusinessmodels.TheresultingsearchstringSisasfollows:
String
Query
S1
(collaborate*ORfederatedORinterorganization*ORinter-organization*ORintercompanyOR
cross-companyORmulti-partyORcross-industr*ORmulti-institution*ORsharedORsharing
ORallianceORnetworked)
S2
(“businessmodel*”O(jiān)R“modelcanvas”O(jiān)R“businessvaluemodel*”)
S
S1ANDS2
Table1.Compiledsearchstringforthedatabasesearch.
TheMainSearchwasconductedfromApril2022toJune2022.ThelistofsearcheddatabasescomprisesIEEEXplore,ACMDigitalLibrary,ScienceDirect,WileyInterScienceandSCOPUS.Weonlyincludedpeer-reviewedEnglishandGermanpublicationswithfull-textaccess.WiththedefinedsearchstringS,databases,andcriteriawecollected262distinctpublications.Weonlyaimtoincludeworkinthefieldofcomputerscienceandtechnology(coarsefocus)aswellasliteratureregardinginter-organizationalcollaborationsandbusinessmodels(narrowfocus).Successively,thecorpusconsistingof262distinctpublicationshasbeenfilteredsolelybytitle,abstractandfulltextregardingthedefinedcoarseandnarrowfocus.Bythis,18publicationsremained.
FortheBackwardSearch,wescannedthereferencesoftheresulting18publicationsfromthemainsearch.Again,thesereferencedpublicationswerefilteredbytitle,abstractandbodyaccordingtotheinclusionandexclusioncriteria.Aftereliminatingduplicates,weaddedonefurtherstudyresultinginatotalof19publications.
Finally,relevantinformationwasextractedandsynthesizedfromthefinalliteraturecorpus.Thestructuredandconsolidatedoutputyieldedasetofcriticalattributesandchallengesofbusinessmodelsforinter-organizationalcollaborationsinthetechnologicalsector.InthefollowingeveryinsightfromtheSLRisreferencedasusualwiththecorrespondingpublication.
3.2In-depthGroupInterview
BasedontheidentifiedchallengesofprevailingcollaborativebusinessmodelsfromtheSLR,weaimedtoexplorethedistinctaspectsofcollaborativebusinessmodelsforinter-organizationalFedMLprojects.Duetothenoveltyofthetopicandtheneedforexploration,weorganizedanin-depthfocusgroupinterview(DilshadandLatif,2013)tostudythebusinessrequirementsofcollaborativeMLprojectsbasedonthefindingsfromtheSLR.
Thefocusgroupconsistedoffiveparticipantsandtwomoderators,whereonemoderatorensuressmoothprogressandtheotherensuresthatalltopicsarecovered.AllparticipantsworkedonaprojectinvolvingtheadoptionofFedMLinacross-companyusecase.TheparticipantswerebriefedaboutcollaborativebusinessmodelsandweregivenanoverviewofthefindingsfromtheSLR.Afterwards,thegroupwas
Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway6
Socio-TechnicalChallengesofCollaborativeAI
askedaboutthecriticalattributesandchallengesofbusinessmodelsrelatedtotheircollaborativeFedMLprojectfollowedbyareflectionandlivelydiscussion.Throughthis,wewereabletoidentifyfurtherchallengesbasedontheirreal-worldexperiences.TheemergingdatawascodedbytworesearchersandincorporatedintotheresultsoftheSLR.Inthefollowing,everyinsightwhichwasgainedthroughthein-depthfocusgroupinterviewisreferencedviatheindex(FG).
3.3Semi-StructuredExpertInterviews
Eventhoughthefocusgrouphelpedexplorethesocio-technicalchallengesofFedMLcollaborations,theinsightsmightbehighlybiasedduetothehomogeneousdemographicsoftheparticipants.Togainamoregenericallyapplicableunderstanding,weaimedtodrawfromtheexperiencesoffurtherexpertsworkinginthefieldofappliedAI,especiallywithexperienceinFedMLprojects.Fortheseexpertinterviews,wedrawfromtheGroundedTheorymethodology(Hodaetal.,2011).Hence,weconfrontedtheintervieweeswithasetofpre-definedquestionsandrecordedaswellastranscribedtheinterviews.Wesuccessivelyconductedandcomparedtheresultsofeachinterview.After5interviewstheoreticalsaturationwasreachedandconsequently,theinterviewstudywasclosed.Thesetofintervieweesrepresentedamorediversesetofexpertsfromdifferentorganizationsanddomains.Table1presentsacodifiedtableofoursample.WedevelopedaninterviewguidebasedontheresearchquestionsandfindingsfromtheSLRaswellasthefocusgroupinterviewincludingopenquestionsaboutpotentiallymissingattributes,challenges,andfurtherinsights.Theseinterviewsallowedustogomorein-depthandidentifymissingaspectsandgainmoredetailed,in-depthindividualunderstandingtodeveloptheguidelinequestionnairefurther.
Theintervieweesallowedthefindingstobepublishedinananonymizedmannerbutdidnotagreetodisclosethefulltranscriptions.Therefore,thefulltranscriptsarenotincluded.Thefindingsfromthesemi-structuredinterviewsarereferencedinthefollowingwiththeparticipantIDaslistedintable2.
ParticipantID
Position
Organization
Duration
E1
AIBusinessDeveloper
LargeGermansoftwareenterprise
52
E2
AIProjectLead
LargeGermansoftwareenterprise
44
E3
PrincipalDataScientist
LargeGermansoftwareenterprise
45
E4
AppliedResearcher
Medium-sizedinnovationcompany
35
E5
ScientificResearcher
Researchinstituteforsoftwaredevelopment
59
Table2.InterviewStudyParticipants
4Socio-TechnicalChallengesofInterorganizationalFederatedMachineLearning
Applyingcollaborativemodelscanbechallengingindifferentdomains,especiallywhenseveralcompaniesareinvolved.Whenthebusinessisoperationalized,complexityincreasessignificantlybecausethegeneralbusinessmodelideaneedstobalancetheinterestsofallparticipants(Paunaetal.,2021).Collaborationswithmultipleparticipantsarecomplexinnature,andcollaborationfailureratesarehigh,leavingmuchrevenueatriskandunrealizedvalue(ManandLuvison,2019).Moreover,aligningthebusinessmodelwithoperationalandgovernance-relatedaspectsissuggestedtohelppositiontheorganizationtodeliveronitsvaluepropositionforasuccessfulimplementationofthebusinessmodel(Curtis,2021).Hence,earlyidentificationofthecollaborationchallengesiscriticalforthesuccessfulcreationofthecollaborativebusinessmodel.
Tobetterunderstandwhichspecificcollaborationchallengesshouldbeconsidered,wefirstinvestigatethechallengesofprevailinginter-organizationalbusinessmodelsand,secondly,whichFedML-related
Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway7
Socio-TechnicalChallengesofCollaborativeAI
socio-technicalaspectsarecriticalforsuccessfulimplementationandthereforeshouldbeconsideredinacorrespondingcollaborativebusinessmodel.
4.1ChallengesofCollaborativeBusinessModels
Jointworkofdifferentorganizationsiscomplex,andorganizationsshouldbepreparedtofacechallengesarisingfromcooperation.Inthefollowing,wegiveanoverviewofthesystematizedresultsoftheSLRonthechallengesofinter-organizationalbusinessmodels.WepresentourkeyresultsinastructuredmannerbasedontheworkofDiirrandCappelli(2018).
DiirrandCappelli(2018)dividethechallengesofinter-organizationalcollaborationsintothreecategories:external,internal,andnetwork-relatedchallenges.Externalandinternalchallengesaredetachedfrominter-organizationalcollaboration.Externalchallengesrelatetoenvironmentalchallenges,e.g.,naturalevents,andinternalchallengesarisefrominsidetheproject,forexample,infrastructureproblems.Network-relatedchallengesfocusontherelationshipsandinteractionsbetweenorganizationsandcanbefurthersubdividedintomanagement,businessprocess,andcollaborationchallenges(DiirrandCappelli,2018).BasedonthesecategoriesinconjunctionwiththefindingsoftheSLRwederivedthefollowingnetwork-relatedchallengesaslistedintable3.
Category
Description
Aspects
Management
Challenges
the
Includehoworganizationscreateandestablishcollaboration,compromisingthefollowingaspects
Selectionofsuitableparticipatingactors(Paunaetal.,2021).
Changemanagementfordynamiccollaboration(Caridàetal.,2015;Redlichetal.,2014).
Cooperationestablishment:lackofcommitmentfromparticipatingorganizations(ProulxandGardoni,2020);buildingandexpandingtrustbetweentheparties(Blejaetal.,2020;DiirrandCappelli,2018;Redlichetal.,2014).
Decision-makingandcoordinationslownesswithinthecollaboration(Blejaetal.,2020;Caridàetal.,2015;DiirrandCappelli,2018;Redlichetal.,2014).
Communicationwithgovernmentauthoritiesrequiresadifferentapproachduetomultipleparties'interactions(Paunaetal.,2021).
BusinessProcessChallenges
Addresseswayorganization’sstructureanddesignpartnershipoperations
Definitionofamutualbusinessgoalofthecollaboration(DiirrandCappelli,2018).
Co-CreationManagementfordeliveringthevalueproposition:
?Distributionoffinancials,investment(Paunaetal.,2021),costs,andrevenues(Blejaetal.,2020;Caridàetal.,2015;Paunaetal.,2021).
?Riskallocation(DiirrandCappelli,2018).
?Ownershipstructure(DiirrandCappelli,2018;Kujalaetal.,2020).
?Responsibilityassignment(DiirrandCappelli,2018).
?Alignonqualityofco-creationproduct(DiirrandCappelli,2018).
?IntellectualpropertyManagement(EppingerandKamprath,2011).
Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway8
Socio-TechnicalChallengesofCollaborativeAI
Slowerbusinessstrategyandprocessidentification(Berkersetal.,2020;DiirrandCappelli,2018).
Alignmentofthestructuresofheterogeneousorganizationswithdistinctcharacteristics(DiirrandCappelli,2018).
Infrastructureformanagingrelationshipsbetweenmultiplecollaborationactors(Caridàetal.,2015;DiirrandCappelli,2018).
Collaboration
Challenges
Describe
how
organizationsjointlyworktogethertoachievethegoalofcollaboration
Agreementoncollaborationandalignmentwiththeorganizations'ownobjectives(Blejaetal.,2020;CostaandDaCunha,2015;DiirrandCappelli,2018;ManandLuvison,2019;Paunaetal.,2021).
Alignmentofdifferentorganizations:cultureandcommonethics(Blejaetal.,2020;DiirrandCappelli,2018;Kujalaetal.,2020).
Riskofopportunismofparticipantsandconsequencesofaction(DiirrandCappelli,2018).
Table3.OverviewofChallengesforInter-OrganizationalCollaborations
ThisoverviewofchallengesisaconsolidationoftheselectedacademicsourcesoftheSLRandaimstoprovideageneralunderstandingofthedifficultiesofsuchcollaborations.Itisimportanttonotethatnaturally,thislistmightnotbecomprehensiveandthatcertain,potentiallyimportant,aspectsmightbemissing.
4.2AspectsofInterorganizationalFedMLBusinessModels
Toprovideinitialguidanceinthecreatio
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 潮州供熱可行性研究報(bào)告
- 藥廠液體制劑監(jiān)控員工作總結(jié)模版
- 預(yù)防呼吸道傳染病
- 學(xué)前兒童發(fā)展 課件 第12章 學(xué)前兒童社會(huì)性的發(fā)展
- 婦幼健康計(jì)劃-婦幼健康計(jì)劃總結(jié)模版
- 業(yè)務(wù)員畢業(yè)生實(shí)習(xí)總結(jié)模版
- 2025年護(hù)士年度個(gè)人工作總結(jié)模版
- 大學(xué)生職業(yè)規(guī)劃大賽《生物科學(xué)專業(yè)》生涯發(fā)展展示
- 六班級(jí)的上學(xué)期美術(shù)組工作總結(jié)模版
- 英格瑪國(guó)企面試題目及答案
- 左哈爾的PolysystemTheory(多元系統(tǒng)理論)課件
- 基礎(chǔ)會(huì)計(jì)練習(xí)題及答案
- 限高桿施工圖 2
- 5萬(wàn)噸鋼筋加工配送中心項(xiàng)目
- 初中數(shù)學(xué)北師大九年級(jí)下冊(cè) 直角三角形的邊角關(guān)系謝榮華 教學(xué)設(shè)計(jì)《銳角三角函數(shù)》
- 機(jī)房空調(diào)升級(jí)改造方案
- 老年患者營(yíng)養(yǎng)支持途徑及配方選擇課件
- 二環(huán)庚二烯(2,5-降冰片二烯)的理化性質(zhì)及危險(xiǎn)特性表
- 【審計(jì)工作底稿模板】FK長(zhǎng)期借款
- arcgis網(wǎng)絡(luò)分析.
- 國(guó)家最新特種設(shè)備目錄
評(píng)論
0/150
提交評(píng)論