




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Chapter4DigitalProcessingofContinuous-TimeSignals§4.1DigitalProcessingofContinuous-TimeSignalsDigitalprocessingofacontinuous-timesignalinvolvesthefollowingbasicsteps: (1)Conversionofthecontinuous-timesignalintoadiscrete-timesignal, (2)Processingofthediscrete-timesignal, (3)Conversionoftheprocesseddiscrete-timesignalbackintoacontinuous-timesignal§4.1DigitalProcessingofContinuous-TimeSignalsConversionofacontinuous-timesignalintodigitalformiscarriedoutbyananalog-to-digital(A/D)converterThereverseoperationofconvertingadigitalsignalintoacontinuous-timesignalisperformedbyadigital-to-analog(D/A)converter§4.1DigitalProcessingofContinuous-TimeSignalsSincetheA/Dconversiontakesafiniteamountoftime,asample-and-hold(S/H)circuitisusedtoensurethattheanalogsignalattheinputoftheA/Dconverterremainsconstantinamplitudeuntiltheconversioniscompletetominimizetheerrorinitsrepresentation§4.1DigitalProcessingofContinuous-TimeSignalsTopreventaliasing,ananaloganti-aliasingfilterisemployedbeforetheS/HcircuitTosmooththeoutputsignaloftheD/Aconverter,whichhasastaircase-likewaveform,ananalogreconstructionfilterisused§4.1DigitalProcessingofContinuous-TimeSignalsSinceboththeanti-aliasingfilterandthereconstructionfilterareanaloglowpassfilters,wereviewfirstthetheorybehindthedesignofsuchfiltersAlso,themostwidelyusedIIRdigitalfilterdesignmethodisbasedontheconversionofananaloglowpassprototypeAnti-aliasingfilterS/HA/DD/AReconstructionfilterDSPCompleteblock-diagram§4.2Samplingof
Continuous-timeSignalsLetga(t)beacontinuous-timesignalthatissampleduniformlyatt=nT,generatingthesequenceg[n]where
g[n]=ga(nT),-<n<
withTbeingthesamplingperiodThereciprocalofTiscalledthesamplingfrequencyFT,i.e.,FT=1/T§4.2.1EffectofSamplingintheFrequencyDomainwetreatthesamplingoperationmathematicallyasamultiplicationofga(t)byaperiodicimpulsetrainp(t):§4.2.1EffectofSamplingintheFrequencyDomainp(t)consistsofatrainofidealimpulseswithaperiodTasshownbelowThemultiplicationoperationyieldsanimpulsetrain:§4.2.1EffectofSamplingintheFrequencyDomaingp(t)isacontinuous-timesignalconsistingofatrainofuniformlyspacedimpulseswiththeimpulseatt=nTweightedbythesampledvaluega(nT)ofga(t)atthatinstantt=nTTheformoftheCTFTofgp(t)isgivenbyTherefore,Gp(jΩ)isaperiodicfunctionofΩconsistingofasumofshiftedandscaledreplicasofGa(jΩ),shiftedbyintegermultiplesofΩTandscaledby1/TEffectofSamplingintheFrequencyDomainKeywords!§4.2.1EffectofSamplingintheFrequencyDomainRecallNow,theCTFTGp(jW)isaperiodicfunctionofWwithaperiodWT=2p/T
∴∴§4.2.1EffectofSamplingintheFrequencyDomainAssumega(t)isaband-limitedsignalwithaCTFTGa(j)asshownbelowThespectrumP(j)ofp(t)havingasamplingperiodT=2/Tisindicatedbelow§4.2.1EffectofSamplingintheFrequencyDomainTwopossiblespectraofGp(j)areshownbelow§4.2.1EffectofSamplingintheFrequencyDomainItisevidentfromthetopfigureonthepreviousslidethatifT>2m,thereisnooverlapbetweentheshiftedreplicasofGa(j)generatingGp(j)
Ontheotherhand,asindicatedbythefigureonthebottom,ifT<2m,thereisanoverlapofthespectraoftheshiftedreplicasofGa(j)generatingGp(j)§4.2.1EffectofSamplingintheFrequencyDomainIfT>2m,ga(t)canberecoveredexactlyfromgp(t)bypassingitthroughanideallowpassfilterHr(j)withagainTandacutofffrequencycgreaterthanmandlessthanT-masshownbelow§4.2.1EffectofSamplingintheFrequencyDomainThespectraofthefilterandpertinentsignalsareshownbelow§4.2.1EffectofSamplingintheFrequencyDomainOntheotherhand,ifT<2m,duetotheoverlapoftheshiftedreplicasofGa(j),thespectrumGp(j)cannotbeseparatedbyfilteringtorecoverGa(j)becauseofthedistortioncausedbyapartofthereplicasimmediatelyoutsidethebasebandfoldedbackoraliasedintothebaseband§4.2.1EffectofSamplingintheFrequencyDomainSamplingtheorem-Letga(t)beaband-limitedsignalwithCTFTGa(j)=0for||>mThenga(t)isuniquelydeterminedbyitssamplesga(nT),-nif
T2m where
T=2/TKeywords!§4.2.1EffectofSamplingintheFrequencyDomainTheconditionT2misoftenreferredtoastheNyquistconditionThefrequencyT/2isusuallyreferredtoasthefoldingfrequency★§4.2.1EffectofSamplingintheFrequencyDomainThehighestfrequencymcontainedinga(t)isusuallycalledtheNyquistfrequencysinceitdeterminestheminimumsamplingfrequencyT=2mthatmustbeusedtofullyrecoverga(t)fromitssampledversionThefrequency2miscalledtheNyquistrate§4.2.1EffectofSamplingintheFrequencyDomainThetermofthepreviousequationfork=0isthebasebandportionofGp(j),andeachoftheremainingtermsarethefrequencytranslatedportionsofGp(j)
ThefrequencyrangeiscalledthebasebandorNyquistbandKeywords!§4.2.1EffectofSamplingintheFrequencyDomainOversampling-ThesamplingfrequencyishigherthantheNyquistrateUndersampling-ThesamplingfrequencyislowerthantheNyquistrateCriticalsampling-ThesamplingfrequencyisequaltotheNyquistrateNote:Apuresinusoidmaynotberecoverablefromitscriticallysampledversion§4.2.1EffectofSamplingintheFrequencyDomainIndigitaltelephony,a3.4kHzsignalbandwidthisacceptablefortelephoneconversationHere,asamplingrateof8kHz,whichisgreaterthantwicethesignalbandwidth,isused§4.2.1EffectofSamplingintheFrequencyDomainInhigh-qualityanalogmusicsignalprocessing,abandwidthof20kHzhasbeendeterminedtopreservethefidelityHence,incompactdisc(CD)musicsystems,asamplingrateof44.1kHz,whichisslightlyhigherthantwicethesignalbandwidth,isused§4.2.1EffectofSamplingintheFrequencyDomainExample4.1(p177)-Considerthethreecontinuous-timesinusoidalsignals:TheircorrespondingCTFTsare:§4.2.1EffectofSamplingintheFrequencyDomainThesethreetransformsareplottedbelow§4.2.1EffectofSamplingintheFrequencyDomainThesecontinuous-timesignalssampledatarateofT=0.1sec,i.e.,withasamplingfrequencyT=20rad/secThesamplingprocessgeneratesthecontinuous-timeimpulsetrains,g1p(t),g2p(t),andg3p(t)TheircorrespondingCTFTsaregivenby
§4.2.1EffectofSamplingintheFrequencyDomainPlotsofthe3CTFTsareshownbelow§4.2.1EffectofSamplingintheFrequencyDomainThesefiguresalsoindicatebydottedlinesthefrequencyresponseofanideallowpassfilterwithacutoffatc=T/2=10andagainT=0.1TheCTFTsofthelowpassfilteroutputarealsoshowninthesethreefiguresInthecaseofg1(t),thesamplingratesatisfiestheNyquistcondition,hencenoaliasing§4.2.1EffectofSamplingintheFrequencyDomainMoreover,thereconstructedoutputispreciselytheoriginalcontinuous-timesignalIntheothertwocases,thesamplingratedoesnotsatisfytheNyquistcondition,resultinginaliasingandthefilteroutputsareallequaltocos(6pt)§4.2.1EffectofSamplingintheFrequencyDomainNote:Inthefigurebelow,theimpulseappearingatΩ=6πinthepositivefrequencypassbandofthefilterresultsfromthealiasingoftheimpulseinG2(jΩ)atΩ=-14πLikewise,theimpulseappearingatΩ=6πinthepositivefrequencypassbandofthefilterresultsfromthealiasingoftheimpulseinG3(jΩ)atΩ=26π§4.2Samplingof
Continuous-timeSignalsNow,thefrequency-domainrepresentationofga(t)isgivenbyitscontinuos-timeFouriertransform(CTFT):
Thefrequency-domainrepresentationofg[n]isgivenbyitsdiscrete-timeFouriertransform(DTFT):§4.2.1EffectofSamplingintheFrequencyDomainWenowderivetherelationbetweentheDTFTofg[n]andtheCTFTofgp(t)TothisendwecomparewithAndmakeuseofg[n]=ga(nT),-∞<n<∞(4.3)(4.6)§4.2.1EffectofSamplingintheFrequencyDomainObservation:WehaveG(ejω)=Gp(jΩ)|Ω=ω/TOr,equivalently,Gp(jΩ)=
G(ejω)|ω=ΩTFromtheaboveobservationand(4.14a)§4.2.1EffectofSamplingintheFrequencyDomainWearriveatthedesiredresultgivenby§4.2.1EffectofSamplingintheFrequencyDomainTherelationderivedonthepreviousslidecanbealternatelyexpressedasFromOrfromItfollowsthatG(ejω)isobtainedfromGp(jΩ)byapplyingthemappingΩ=ω/T★★Keywords!§4.2.1EffectofSamplingintheFrequencyDomainAnotherExample4.2inPage179TheeffectofsamplinginthefrequencydomaincanbeinvestigatedusingMATLAB
Anexponentiallydecayingcontinuous-timesignalissampledattwodifferentrates.Infigure4.7-4.9,wecompareitstwospectrumsampledby2Hzand2/3Hz.§4.2.2RecoveryoftheAnalogSignalTheimpulseresponsehr(t)ofthelowpassreconstructionfilterisobtainedbytakingtheinverseDTFTofHr(j)
^Wenowderivetheexpressionfortheoutput oftheideallowpassreconstructionfilterHr(j)asafunctionofthesamplesg[n]§4.2.2RecoveryoftheAnalogSignalThus,theimpulseresponseisgivenbyTheinputtothelowpassfilteristheimpulsetrain
gp(t):§4.2.2RecoveryoftheAnalogSignalSubstitutinghr(t)=sin(ct)/(Tt/2)intheaboveandassumingforsimplicity
c=T/2=/T,weget^*^^Therefore,theoutputoftheideallowpassfilterisgivenby:whichiscalledPoissonsumformula§4.2.2RecoveryoftheAnalogSignalTheidealbandlimitedinterpolationprocessisillustratedbelowIllustrationofPoissonsumformula§4.2.2RecoveryoftheAnalogSignalItcanbeshownthatwhenΩc=ΩT/2inhr(t)=sin(Ωct)/(ΩTt/2)hr(0)=1andhr(nT)=0forn≠0Asaresult,fromWeobserveForallintegervaluesofrintherange-∞<r<∞§4.2.2RecoveryoftheAnalogSignalTherelation
holdswhetherornottheconditionofthesamplingtheoremissatisfiedHowever,ForallvaluesoftonlyifthesamplingfrequencyΩTsatisfiestheconditionofthesamplingtheorem§4.2.3
ImplicationoftheSamplingProcessConsideragainthethreecontinuous-timesignals:g1(t)=cos(6t),g2(t)=cos(14t),andg3(t)=cos(26t)TheplotoftheCTFTG1p(j)ofthesampledversiong1p(t)ofg1(t)isshownbelow§4.2.3
ImplicationoftheSamplingProcessFromtheplot,itisapparentthatwecanrecoveranyofitsfrequency-translatedversionscos[(20k6)t]outsidethebasebandbypassingg1p(t)throughanidealanalogbandpassfilterwithapassbandcenteredat=(20k6)§4.2.3
ImplicationoftheSamplingProcessForexample,torecoverthesignalcos(34pt),itwillbenecessarytoemployabandpassfilterwithafrequencyresponse whereDisasmallnumber§4.2.3
ImplicationoftheSamplingProcessLikewise,wecanrecoverthealiasedbasebandcomponentcos(6pt)fromthesampledversionofeitherg2p(t)org3p(t)bypassingitthroughanideallowpassfilterwithafrequencyresponse§4.2.3
ImplicationoftheSamplingProcessThereisnoaliasingdistortionunlesstheoriginalcontinuous-timesignalalsocontainsthecomponentcos(6pt)Similarly,fromeitherg2p(t)org3p(t)wecanrecoveranyoneofthefrequency-translatedversions,includingtheparentcontinuous-timesignalg2(t)org3(t)asthecasemaybe,byemployingsuitablefilters§4.3SamplingofBandpassSignalsTheconditionsdevelopedearlierfortheuniquerepresentationofacontinuous-timesignalbythediscrete-timesignalobtainedbyuniformsamplingassumedthatthecontinuous-timesignalisbandlimitedinthefrequencyrangefromDCtosomefrequencyTSuchacontinuous-timesignaliscommonlyreferredtoasalowpasssignal§4.3SamplingofBandpassSignalsThereareapplicationswherethecontinuous-timesignalisbandlimitedtoahigherfrequencyrangeL||
HwithL>0Suchasignalisusuallyreferredtoasthebandpasssignal
Topreventaliasingabandpasssignalcanofcoursebesampledatarategreaterthantwicethehighestfrequency,i.e.byensuring
T
2H§4.3SamplingofBandpassSignalsHowever,duetothebandpassspectrumofthecontinuous-timesignal,thespectrumofthediscrete-timesignalobtainedbysamplingwillhavespectralgapswithnosignalcomponentspresentinthesegapsMoreover,ifHisverylarge,thesamplingratealsohastobeverylargewhichmaynotbepracticalinsomesituations§4.3SamplingofBandpassSignalsAmorepracticalapproachistouseunder-samplingLet=H-LdefinethebandwidthofthebandpasssignalAssumefirstthatthehighestfrequencyHcontainedinthesignalisanintegermultipleofthebandwidth,i.e.,
H
=M()_________§4.3SamplingofBandpassSignalsWechoosethesamplingfrequencyTtosatisfytheconditionT
=2()=2H/M whichissmallerthan2H,theNyquistrateSubstitutetheaboveexpressionin★§4.3SamplingofBandpassSignalsAsbefore,Gp(j)consistsofasumofGa(j)andreplicasofGp(j)shiftedbyintegermultiplesoftwicethebandwidthDWandscaledby1/TTheamountofshiftforeachvalueofkensuresthattherewillbenooverlapbetweenallshiftedreplicasThisleadstonoaliasing§4.3SamplingofBandpassSignalsFigurebelowillustratetheideabehind00§4.3SamplingofBandpassSignalsAscanbeseen,ga(t)canberecoveredfromgp(t)bypassingitthroughanidealbandpassfilterwithapassbandgivenbyL||
H andagainofTNote:Anyofthereplicasinthelowerfrequencybandscanberetainedbypassing throughbandpassfilterswithpassbandsL-k()||
H
-k(),1
kM-1
providingatranslationtolowerfrequencyranges§4.7Sample-and-HoldCircuitFigure4.36ThebasicS/HCircu
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年SAT語(yǔ)法知識(shí)測(cè)試卷:語(yǔ)法學(xué)習(xí)技巧與測(cè)試卷試題
- 2025年成人高考《語(yǔ)文》詩(shī)歌主題高頻考點(diǎn)速記題庫(kù)解析
- 2025年征信考試題庫(kù):征信市場(chǎng)監(jiān)管政策與風(fēng)險(xiǎn)控制
- 2025年注冊(cè)會(huì)計(jì)師考試《會(huì)計(jì)》新準(zhǔn)則解讀及備考策略與技巧模擬試題
- 2025年小學(xué)英語(yǔ)畢業(yè)考試模擬試卷(英語(yǔ)翻譯技巧聽(tīng)力訓(xùn)練與技巧提升訓(xùn)練試題)
- 2025年注冊(cè)會(huì)計(jì)師考試《會(huì)計(jì)》歷年真題深度剖析:高頻考點(diǎn)模擬試題庫(kù)
- 2025年拍賣師專業(yè)題集:拍賣行業(yè)創(chuàng)新模式與商業(yè)模式創(chuàng)新應(yīng)用試題
- 2025年軟件設(shè)計(jì)師考試模擬試卷:軟件設(shè)計(jì)師職業(yè)發(fā)展策略與案例分析
- 2025年小學(xué)語(yǔ)文畢業(yè)升學(xué)考試全真模擬卷(語(yǔ)文綜合素養(yǎng)測(cè)評(píng))古詩(shī)詞解析
- 2025年舞蹈教師資格證考試模擬試卷:舞蹈教師教育教學(xué)評(píng)價(jià)試題
- 電網(wǎng)工程設(shè)備材料信息參考價(jià)(2024年第四季度)
- 走進(jìn)創(chuàng)業(yè)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2023年(第九屆)全國(guó)大學(xué)生統(tǒng)計(jì)建模大賽 論文模板及說(shuō)明
- GB/T 37864-2019生物樣本庫(kù)質(zhì)量和能力通用要求
- 軍隊(duì)經(jīng)濟(jì)適用住房建設(shè)管理辦法
- 全州朝鮮族小學(xué)校小班化教育實(shí)施方案
- pep小學(xué)英語(yǔ)四年級(jí)下課文及翻譯
- 四川工程竣工驗(yàn)收備案表
- 2021北京四中新初一分班英語(yǔ)試題(1)
- 畢業(yè)論文板式輸送機(jī)的設(shè)計(jì)
- 三相異步電動(dòng)機(jī)軟啟動(dòng)器的研究
評(píng)論
0/150
提交評(píng)論