版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
electronics
/journal/electronics
Electronics2021,10,1266.
/10.3390/electronics10111266
Article
End-to-EndDeepNeuralNetworkArchitecturesforSpeedandSteeringWheelAnglePredictioninAutonomousDriving
PedroJ.Navarro1,*,LeanneMiller1,FranciscaRosique1,CarlosFernindez-Isla1andAlbertoGila-Navarro2
checkfor
updates
Citation:Navarro,P.J.;Miller,L.;Rosique,F.;Fernández-Isla,C.;Gila-Navarro,A.End-to-EndDeep
NeuralNetworkArchitecturesfor
SpeedandSteeringWheelAnglePredictioninAutonomousDriving.Electronics2021,10,1266.
https://
/10.3390/electronics10111266
AcademicEditors:DongSeogHan,KalyanaC.VeluvoluandTakeoFujii
Received:13April2021
Accepted:18May2021
Published:25May2021Publisher’sNote:MDPIstaysneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaf?l-iations.
Copyright:?2021bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccessarticledistributedunderthetermsand
conditionsoftheCreativeCommons
Attribution(CCBY)license(https
://
/licenses/by/
4.0/).
1
2
*
Divisi6ndeSistemaseIngenieriaElectr6nica(DSIE),CampusMuralladelMar,s/n,UniversidadPolitécnicadeCartagena,30202Cartagena,Spain;ler@upct.es(L.M.);paqui.rosique@upct.es(F.R.);
carlos.fernandez@upct.es(C.F.-I.)
GenéticaMolecular,InstitutodeBiotecnologiaVegetal,Edi?cioI+D+I,PlazadelHospitals/n,UniversidadPolitécnicadeCartagena,30202Cartagena,Spain;alberto.gilan@um.es
Correspondence:pedroj.navarro@upct.es;Tel.:+34-968-32-6546
Abstract:Thecomplexdecision-makingsystemsusedforautonomousvehiclesoradvanceddriver-assistancesystems(ADAS)arebeingreplacedbyend-to-end(e2e)architecturesbasedondeep-neural-networks(DNN).DNNscanlearncomplexdrivingactionsfromdatasetscontainingthousandsofimagesanddataobtainedfromthevehicleperceptionsystem.Thisworkpresentstheclassi?cation,designandimplementationofsixe2earchitecturescapableofgeneratingthedrivingactionsofspeedandsteeringwheelangledirectlyonthevehiclecontrolelements.Theworkdetailsthedesignstagesandoptimizationprocessoftheconvolutionalnetworkstodevelopsixe2earchitectures.Inthemetricanalysisthearchitectureshavebeentestedwithdifferentdatasourcesfromthevehicle,suchasimages,XYZaccelerationsandXYZangularspeeds.Thebestresultswereobtainedwithamixeddatae2earchitecturethatusedfrontimagesfromthevehicleandangularspeedstopredictthespeedandsteeringwheelanglewithameanerrorof1.06%.Anexhaustiveoptimizationprocessoftheconvolutionalblockshasdemonstratedthatitispossibletodesignlightweighte2earchitectureswithhighperformancemoresuitableforthe?nalimplementationinautonomousdriving.
Keywords:autonomousdriving;end-to-endarchitecture;speedandsteeringwheelangleprediction;DNNforregression
1.Introduction
Autonomousdrivingtechnologyhasadvancedgreatlyinrecentyears,butitisstillanongoingchallenge.Traditionally,intelligentdecisionmakingsystemsonboardautonomousvehicleshavebeencharacterizedbytheirenormouscomplexity[
1
]andarecomposedofmultiplesubsystems,includingaperceptionsystem,globalandlocalnavigationsystems,acontrolsystem,asurroundingsinterpretationsystem,etc.,[
2
].Thesesubsystemsarecombinedaimingtocoverthecomplicateddecisionsandtaskswhichthevehiclemustperformwhilstdriving.Toobtaintheobjectivesofthevehicle,thesesubsystemsuseawiderangeoftechniqueswhichinclude:cognitivesystems[
3
],agentsystems[
4
],fuzzysystems[
5
],neuralnetworks[
6
],evolutionaryalgorithms[
7
]orrule-basedmethods[
8
].
Deeplearningtechniquesarebecomingincreasinglypopularandarenowavaluabletoolinawiderangeofindustries,includingtheautomotiveindustry,duetotheirpowerfulimagefeatureextraction.Thesetechniqueshaveallowedtheso-calledend-to-end(e2e)drivingapproachtoappear,simplifyingthetraditionalsubsystemsgreatlyandreducingthetasksofmodelingandcontrolofthevehicle[
9
](Figure
1
).TheappearanceofDNNsmeanthatdecision-makingsystemsonboardautonomousvehiclescanreplacemanyofthesubsystemsmentionedpreviouslywithneuralblocks[
10
].Theseneuralblocks,properlyinterconnectedandtrainedwiththecorrectdataarecapableofobtainingperformancesgreaterthan95%forthepredictionofvehiclecontrolvariables[
11
].Anadvantageofthesemodelsisthattheygenerallyrequirefeweronboardsensorsasthemainsourceof
2of21
Electronics2021,10,1266
informationfedtotheDNNsusuallyconsistsofRGBimagesandkinematicdatafromaninertialmeasurementunit(IMU)[
12
].Thismakesend-to-enddrivingsystemsmoreeasilyaccessiblethanthetraditionalperceptionsubsystemswithsensorssuchasLIDARwhichareverycostly.
Figure1.Traditionaldrivingsystemscomparedtoend-to-enddrivingsystem.
Deeplearningmethodsforautonomousdrivinghavegainedpopularitywithadvance-mentsinhardware,suchasGPUs,andmorereadilyavailabledatasets,bothforend-to-enddrivingtechniques[
13
]andtheuseofdeeplearninginindividualsubsystems[
14
].Therehavebeenavarietyofdifferentapproachesforthedevelopmentofdrivingapplicationsusingendtoendlearningtechniques.Inonestudy,a98%accuracywasobtainedusingconvolutionalneuralnetworks(CNN)togeneratesteeringanglesfromimagesgeneratedbyafrontviewcamera[
15
].Inasimilarwork,asequenceofimagesfromapublicdatasetwasusedasinputtotheCNN,topredictwhetherthevehiclewasaccelerating,deceleratingormaintainingspeedaswellascalculatingthesteeringangle[
16
].
AninterestingapproachdesignedaCNNtodevelopahuman-likeautonomousdrivingsystemwhichaimstoimitatehumanbehaviormeaningthevehiclecanbetteradapttorealroadconditions[
13
].Theauthorsused3DLIDARdataasinputtothemodelandgeneratedsteeringandspeedcommands,andinadrivingsimulationmanagedtodecreaseaccidentswiththeautonomoussystemten-foldcomparedwiththehumandriver.AdrivingsimulatorwasalsousedtotestaCNN-basedclosedloopfeedbacktocontrolthesteeringangleofthevehicle[
17
].TheauthorsdesignedtheirownCNN,DAVE-2SKY,usingtheCaffedeeplearningframeworkandtestedthesysteminalane-keepingsimulation.
Theresultswerepromising,althoughproblemsoccurredifthedistancetothevehicleinfrontbecamelessthan9m.
Variouslongshort-termmemory(LSTM)modelshavealsobeenstudied.Aconvolu-tionalLSTMmodelwithbackpropagationwastrainedtoobtainthesteeringanglefromvideoframesusingtheUdacitydataset[
18
].AnFCN-LSTMarchitecturewasusedtopredictdrivingactionsandmotionfromimagesobtainingalmost85%accuracy.Acon-volutionalLSTMmodelwasalsousedtopredictsteeringanglesfromastreamofimagesfromafrontfacingcamera[
19
],improvingontheresultsfrompreviousworks[
20
].
Anotherapproachconsistsinaddingmoresensors.Inoneworkadatasetwasobtainedusingsurroundviewcamerasinadditiontothetypicalfrontviewcamera[
21
].ThedataobtainedbythecameraswasusedtopredictthespeedandsteeringangleusingexistingpretrainedCNNmodels.Theuseofsurroundviewcamerasimprovedtheresultsobtainedatlowspeeds(<20km/h),butatgreaterspeedstheimprovementwaslesssigni?cant.
Inthiswork,wepresentadetailedstudyimplementingsixend-to-endDNNarchitec-turesforthepredictionofthevehiclespeedandthesteeringwheelangle.Thearchitectureshavebeentrainedandtestedusing78,011imagesfromrealdrivingscenarios,whichwerecapturedbytheCloudIncubatorCar(CIC)autonomousvehicle[
2
].
3of21
Electronics2021,10,1266
2.MaterialsandMethods
DNNend-to-endarchitecturesrequirelargevolumesofdataforthemodelstocon-vergecorrectly.ThedataneededtocreateDNNmodelsforautonomousdrivingorADAScanbeobtainedfromthreedifferenttypesofsources:
1.Adhoctests.Toperformthistypeoftesting,largeresourcesarerequired,intheformofoneormorevehicles,expensiveperceptionsystems(e.g.,LIDAR)andpersonnelcapableoftheinstallation,integrationandcommissioningofsophisticatedsensorsanddatarecordingsystems.Inaddition,thedatamustbepost-processed,andthesynchronizationofthedifferentvehicleinformationsourcesisrequired.
2.Publicdatasets.Therearedatasetsdevelopedbybusinessesanduniversitiesforau-tonomousdrivingwheredataobtainedfromtheperceptionsystemsoftheirvehiclescanbeaccessed[
10
].Someofthesepresentdiversescenarioswithdifferentlightandmeteorologicalconditions[
22
].Table
1
showssomerecentpublicdatasetsincludingnumberofsamples,typesofimagesavailableandtypesofvehiclecontrolactionsstored.
3.Simulators.Giventhecomplexityofconductingrealtests,autonomousdrivingsimulatorshavebecomeoneofthemostwidelyusedalternatives.Thesimulationindustryrangesfromsimulationplatforms,vehicledynamicssimulationandsensorsimulationtoscenariosimulationandevenscenariolibraries.Atpresent,therearemanyoptions,includinggenericsolutionswhichmakeuseofgamesandphysicenginesforsimulation[
23
]androboticssimulators[
16
].Recentlyonthemarketcompaniesthatdevelopsimulationproductsspeci?callydesignedtosatisfytheneedsofautonomousdrivinghaveappeared.SomeofthesecompaniesincludeCognata,CARLA,METAMOTO,etc.
Table1.Publicdatasetsforautonomousdriving.
Ref./Year
Samples
ImageType
LIDAR
RADAR
IMU
ControlActions
UPCT2019
78,000
RGB,Depth
Yes
No
Yes
Steeringwheel,Speed
LyftL5[
24
]/2019
323,000
RGB
Yes
No
Yes
-
nuScenes[
25
]/2019
1,400,000
RGB
Yes
Yes
Yes
-
Pandaset[
22
]/2019
48,000
RGB
Yes
No
Yes
-
Waymo[
23
]/2019
1,000,000
RGB
Yes
No
Yes
-
Udacity[
16
]/2016
34,000
RGB
Yes
No
Yes
Steeringwheel
GAC[
26
]/2019
3,240,000
RGB
No
No
No
Steeringwheel,Speed
Inthisworkadhocdatahasbeenchosen.Toobtainthedata,acustomdatasetwas
created,astheresultofadhocdrivingtestsperformedusingtheCloudIncubatorCarautonomousvehicle(CICar)[
2
](seeFigure
2
),anautonomousvehicleprototypebasedontheadaptionofthecommercialelectricvehicle,RenaultTwizy.Thevehiclehasbeenconvenientlymodi?edandhousesacompleteperceptionsystemconsistingofa2DLIDAR,3DHDLIDAR,ToFcameras,aswellasalocalizationsystemwhichcontainsareal-timekineticunit(RTK)andinertialmeasurementunit(IMU,seeFigure
2
c)andautomationofthedrivingelementsofthevehicle(accelerator,brake,steeringandgearbox).Allofthisiscomplementedwiththebiometricdataofthedriverstakenduringthedrivingtests.
2.1.DrivingTests
Agroupof30driversofdifferentageandgenderwereselectedtoperformthedrivingtests,ofwhich?vewerediscardedduetosynchronizationproblems,recordingfailureorincompletedata.ThedrivingtestswerecarriedoutinCartagenaintheRegionofMurcia,Spain,followingapreviouslyselectedroutewithrealtraf?c.
Thisrouteprovidesasigni?cantsetoftypicalurbandrivingscenarios:(a)junctionswithrightofwayandchangesofpriority;(b)incorporation,internalcirculationandexitingofaroundabout;(c)drivingalongaroadwithandparkingareas;(d)mergingtraf?c
4of21
Electronics2021,10,1266
situations.Inordertocontemplateagreatervarietyofenvironmentalconditions,eachdrivercompletedtheroutetwiceatdifferenttimesofday(morning,afternoonorevening).InFigure
3
asampleofsomeofthedatasetimagesisshown,wheresomeofthedifferentdrivingconditionscapturedduringthetestscanbeobserved.
Figure2.(a)CloudIncubatorCarautonomousvehicle(CiCar).(b)CiCarondataacquisitionmission.(c)Vehiclemodel
andIMUsensormeasurementdetails.
Figure3.Imagesfromdataset.(a)pedestriancrossing;(b)saturationoftheilluminationonroundabout;(c)carbraking;
(d)complexshadowsontheroad.
2.2.VehicleCon?guration
Asmentionedpreviously,thedatawascollectedusingtheCICarprototypevehicleinmanualmode,drivenbyahumandriver.InTable
2
thevariablesanddataacquiredduringthedrivingtestsareshown,aswellastheinformationaboutthedevicesandsystemsusedtoobtainthedata.
Eachsensorworkswithitsownsamplerate,andinmostcasesthisisdifferentbetweendevices.Toachievethecorrectdatasynchronizationandreconstructthetemporalsequencewithprecision,stampingtimeshavebeengeneratedforeachsensorandthesehavebeensynchronizedatthestartandendoftherecording.Therefore,allthedevicesarecontrolledbythecontrolunitonboardthevehicle,providingaperfecttemporalandspatialsynchronizationofthedataobtainedbythedifferentsensors.Thedatafromeachtestisdownloadedandstoredinthecentralserveroncethedrivehas?nished.
5of21
Electronics2021,10,1266
Table2.CICar.Sensordata.
Variable/Unit
Device/System
Frequency
Vehicleposition/(LLA)acceleration/(m/s2)
1
GNSS-IMU
4Hz
20Hz
angularspeed/(。/s)
20Hz
Steeringwheelangle/(。)
50Hz
Distance/(m)
compactRioControlunit
50Hz
Speed/(m/s)
50Hz
Frontalimage/
RGBDCamera
25fps
Driverattentionimage
RGBCamera
25fps
SurroundingsCloudPoints
LIDARs,ToFcameras
10Hz
1LLA—latitude,longitude,andaltitude.
2.3.DeepLearningEnd-to-EndArchitecturesClassi?cation
End-to-end(e2e)systemsbasedonDNNarchitecturesappliedtoautonomousdrivingcanmodelthecomplexrelationshipsextractedfromtheinformationobtainedfromthevehicleperceptionsystem.Thisisachievedusingdifferenttypesofneuralblocksgroupedintolayers(e.g.,convolutionallayers,fully-connectedlayers,recurrentlayers,etc.),withtheaimofgeneratingdirectcontrolactionsonthesteeringwheel,theacceleratorandthebrake.Theseactionsonthevehiclecontrolelementscanbecategorical,e.g.,increaseordecreasethespeed,ortheycangenerateasetpointonthecontroller,e.g.,turn13.6degreesorreach45km/h.
Themachinelearningalgorithmsthatareusedtomodeldrivingactionsbelongtothesetknownassupervisedlearning.Thesealgorithmsacquireknowledgefromadatasetofsamplespreviouslyacquiredduringdrivingtestswithapreviouslyconditionedvehicle[
2
]orfromdrivingsimulators[
27
].Thesedatasetsincludedatafromtheperceptionsystem,suchas:images(RGBoIR),LIDAR,RADAR,IMU,aswellastheactionsperformedbythedriveronthevehiclecontrolelements,suchasthesteeringwheel,theacceleratorandthebrake.
Thegenerationofdiscretevariablesbyamachinelearningalgorithmisknownasregressionandisawidelystudiedproblem[
28
].RegressionmodelsforDNNusethegradientdescentfunctiontosearchfortheoptimalweightsthatminimizethelossfunction.Thelossfunctionsusedforthesemodelsdifferfromthoseusedintheclassi?cationmodels,withthemostusedbeingthemeanabsoluteerror,meansquareabsoluteerrorormeanabsolutepercentageerror,amongothers.
Thisworkproposesaclassi?cationofe2earchitecturesbasedonthetypeofdatareceivedbytheDNNfromthevehicleperceptionsystem.Thisisdonebyconsideringtheimageprovidedbythevisualperceptionsystemofthevehicleasthemaindatasourceforthee2earchitecture.Basedonthetypeofnetworkinput,thearchitectureshavebeenclassi?edintothreetypes:(1)singledatae2earchitecture(SiD-e2e),(2)mixeddatae2earchitecture(MiD-e2e)andsequentialdatae2earchitecture(SeD-e2e).
2.3.1.SiD-e2eArchitecture
Thistypeofarchitectureusesasingledatasourcefortheinputlayertogeneratethesetpointsdirectlyforthecontrolelementsofthevehicle.TheSiDarchitecturesusethevisualinformationprovidedbyoneormorecameraslocatedonthefrontandperipheryofthevehicletocomposeasingleimageofthevehicles?eldofviewofthevehicleasavisualinputtothenetwork[
15
,
29
,
30
].BeforebeingprocessedbytheDNN,theimagesarereducedinsizeandnormalized.Subsequently,theimagesgothroughconvolutionallayersofdifferentkernelsize(kok)anddepth(d)whichallowtheimagefeaturesthatminimizethecostfunctiontobeextractedautomaticallyinsuccessivelayers.Aftertheconvolutionallayers,theresultingvectoristransformedintoonedimension(Flayer)andconnectedtoasetoffully-connectedlayers(FC)whichhavethedecision-makingcapacity.Lastly,theFClayersendinthenumberofneuronsequaltothenumberofvariablestobe
6of21
Electronics2021,10,1266
predicted[
15
,
28
].Figure
4
showsanexampleoftheSiDarchitecturewherethenormalizedimagefeedsagroupofconvolutionallayerswithdifferentkernelsizes,followedbyasetoffully-connectedlayersanda?naloutputlayer.
Figure4.Singledatae2earchitecture(SiD).
Thenumberofconvolutionallayers,theirsize,paddingandstride,aswellasthenumberofneuronsintheFClayersareadjustedempirically.Theseparametersarede-pendentonthetrainingdatasetandthesizeoftheinputimages.Thereareworkswherethearchitectureshavebeendesignedusingbanksofconvolutional?ltersofincreasingsize[
30
]andthereareotherswherethedesignistheopposite[
31
,
32
].Generallyspeaking,theconvolutionallayerswithasmallkernelsizeextractreducedspatialcharacteristics,suchastraf?csigns,traf?clightsorlaneseparationlines,whilethosewithagreaterkernelsizedetectlargerelementsintheimage,suchasvehicles,pedestriansortheroad[
31
].
2.3.2.MiD-e2eArchitecture
Mixeddataarchitecturesallowdifferentdatasourcesfromthevehicle,suchasRADAR,longitudinalandlateralaccelerations,angularvelocities,mapsorGPStobemergedtogetherwiththevisualinformationfromthevehicle’scameras.TheinclusionofmoreinformationsourcesintheDNNaimsto:(1)improvetheperformanceofthemodel,(2)improvethepredictionofspeci?ccasesorabnormaldriving;and(3)increasethetolerancetofailuresproducedbythedatasources[
21
,
29
,
33
].AsshowninFigure
5
,thistypeofarchitecturecombinestheresultsoftheSiD-e2e,suchasthoseshownintheprevious
Section
2.3.1
,withasetofFClayerswhichallowsthemappingofthecharacteristicsfromothervehicledatasourcesonalayerthatconcatenatesalltheinformation.
Figure
5
showsa?rstinputbranchwheretherelevantinformationisextractedfromtheimagewithasecondbranchthatextractsextrainformation,forexamplefromtheIMUorGPS.Theconcatenationlayerreceivesaspeci?ednumberofinputsfrombothbranchesofthemodel.Thenumberofconnectionsfromeachbranchisusuallydeterminedusingempiricaltechniques.MiDarchitectureishabituallyusedindatafusionintheperceptionsystemsofautonomousvehiclesorADAS.
7of21
Electronics2021,10,1266
Figure5.Mixeddatae2earchitecture(MiD).
2.3.3.SeD-e2eArchitecture
Drivingisataskwherethefutureactionsonthevehicle’scontrolelementsdependgreatlyonthepreviousactions,thereforethepredictionofthecontrolactionscanbemodeledasatimeseriesanalysis[
16
,
26
,
34
].Sequentialdatabasedarchitecturesaimtomodelthetemporalrelationshipsofthedatausingfeedbackneuralunits(seeFigure
6
),thesetypesofneuralnetworksareknownasrecurrentneuralnetworks(RNN)[
34
].BasicRNNscanlearntheshort-termdependenciesofthedatabuttheyhaveproblemswithcapturingthelong-termdependenciesduetovanishinggradientproblems[
35
].Tosolvethevanishinggradientproblems,moresophisticatedRNNarchitectureshaveappearedwhichuseactivationfunctionsbasedongatingunits.Thegatingunithasthecapacityofconditionallydecidingwhatinformationisremembered,forgottenorforpassingthroughtheunit.Thelongshort-termmemory(LSTM)[
36
]andGRU(gatedrecurrentunit)aretwoexamplesofthesekindsofRNNarchitectures[
37
].
Figure6.Sequentialdatae2earchitecture(SeD).
RNN[
15
],LSTM(longshort-termmemory)[
16
]andGRU(gatedrecurrentunit)arethemostusedformodelingthetemporalrelationshipsinthe?eldofe2earchitectures.TheuseofRNNine2earchitecturesrequiresthenetworkinputdatatobetransformedintotemporalsequencesintheformoftimesteps(ts).ThepartitioningoftheNinputsamples
8of21
Electronics2021,10,1266
ofthenetworkwillgenerate(N-ts)temporalsequencesthatwillcorrespondtoanoutputvectorfromthenetworkaccordingtoEquation(1):
S.input=<[I1,..,Its|,[I2,..,Its+1|...,[In-1-ts,..,IN-1|},
output=<ots+1,ots+2,............,oN}
(1)
Figure
7
showstheprocedurestogenerateN-tssequencesofsizetsfromadatasetcomposedofNimagesandNpairsofoutputvalues(v:speed,9:steeringwheelangle).
Figure7.Compositionofsequentialimagesandoutputvaluesdata.
TocreateamodelfromtheSeD-e2earchitectures,thiswillbetrainedwithtemporalsequencesofsizets(I1toIts)andthenextoutputvectortopredict(vts+1,9ts+1)asitisshownintheFigure
7
.
2.4.ParemetersofDeepNeuralNetworkArchitectures
ThenumberofparameterswhichcomeintoplayduringthedesignprocessofaDNNisenormousandwecanseparatethemintothreetypes:
(1)Networkinputparameters.Theseparametersrefertothewaythenetworkinputvaluesarepresented.Fordataintheformofimages,theshapeparametersinclude:
·Normalization.Normalizationmustbeperformedonthedatabeforetrainingthe
DNN.Anadequatenormalizationcanimprovetheconvergenceandperformanceofthenetwork.Equations(2)and(3)showthemostcommontechniques.
Scaled(0,1)=(xi-min)/(max-min)(
2)
Standarized(╱=0,J=1)=(xi-╱)/(J)(
3)
whereminandmax,arethemaximumandminimumvaluespresentinthedatasetX={x1,...,xN},withuandobeingtheaverageandstandarddeviationofthedataset,respectively.Thereareothernormalizationtechniques,forexample,themeancanbesubstitutedforthemodeinEquation(3),forcasesinwhichthedatadistributiondoesnotalignbelowthemean.
·Resizing.Asageneralruleandespeciallyine2earchitecturesforautonomous
driving,theimagesizeisreducedbeforebeingprocessedbythenetwork.Themainreasonforthisistodecreasethenetworkprocessingtimeandtheresourcesinvolvedintheprediction.
·Colorspacetransformations.Itiscommontotransformtheinputimagetoa
colorspaceotherthantheonesuppliedbythecameratoimproveperformance,forexampleHSI,LAB,etc.,[
10
].
·Preprocessing.Whenthedataiscapturedfromdifferentsourcesordataset,these
tendtohavedisparatefeaturesfromthedeviseitselforfromthelightingof
9of21
Electronics2021,10,1266
thescenewheretheimageswerecaptured,thereforehistogramequalizationorimageenhancementalgorithmsareusuallyappliedtonormalizetheappearanceoftheentiredataset.
·Dataaugmentation.Thistechniqueconsistsinincreasingthesizeoftheoriginal
datasetinordertoachievehigherlevelsofgeneralizationandtoimprovetheperformanceofthenetwork[
38
].
(2)Architecturecon?gurationparameters.Theseparametersconstitutethecompositionofonearchitectureoranother,andtheseinclude:
·Typeoflayer.Thearchitecturescanstackdifferentsetsoflayersineachbranch:
FC,Convolutional,RNN,Concatenated,etc.
·Layersettings.Eachlayerhasspeci?ccon?gurations,forexample,convolutional
layerscanbecon?guredwithdifferenttypesof?lters,3o3,5o5,...,kok,theirdepthornumberoflayers.
·Layerdistribution.Thearchitecturescanconsistofasinglebranch,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 船舶泵機(jī)租賃合同
- 醫(yī)療創(chuàng)新項(xiàng)目管理流程
- 智能機(jī)場(chǎng)智能化施工合同
- 住院期間患者離院管理
- 建筑綠化安全合同協(xié)議書
- 醫(yī)保業(yè)務(wù)數(shù)據(jù)
- 植物園水電設(shè)施施工協(xié)議
- 電力工程皮卡租賃協(xié)議
- 醫(yī)療器械招標(biāo)評(píng)分索引表模板
- 神經(jīng)外科護(hù)理觀察典型案例
- 湖北省公安廳機(jī)場(chǎng)公安局警務(wù)輔助人員招聘考試試題及答案
- 2024年通信電子計(jì)算機(jī)技能考試-中國(guó)聯(lián)通筆試參考題庫(kù)含答案
- 新修訂公司法專題講座課件
- 中國(guó)加速康復(fù)外科臨床實(shí)踐指南(2021)解讀
- 會(huì)計(jì)技能大賽實(shí)訓(xùn)總結(jié)與反思
- MOOC 大學(xué)英語視聽導(dǎo)學(xué)-湖南大學(xué) 中國(guó)大學(xué)慕課答案
- 無人機(jī)駕駛航空器飛行管理暫行條例(草案)知識(shí)考試題庫(kù)(85題)
- 政務(wù)信息宣傳培訓(xùn)課件
- 銀行營(yíng)銷策略市場(chǎng)調(diào)研分析
- 2024年房地產(chǎn)公司設(shè)計(jì)類技術(shù)筆試歷年真題薈萃含答案
- 霧化吸入依從性品管圈課件
評(píng)論
0/150
提交評(píng)論