《高數(shù)雙語(yǔ)》課件section 5-5_第1頁(yè)
《高數(shù)雙語(yǔ)》課件section 5-5_第2頁(yè)
《高數(shù)雙語(yǔ)》課件section 5-5_第3頁(yè)
《高數(shù)雙語(yǔ)》課件section 5-5_第4頁(yè)
《高數(shù)雙語(yǔ)》課件section 5-5_第5頁(yè)
已閱讀5頁(yè),還剩48頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Section5.5ApplicationsofDefiniteIntegralsMethodofelementsforsettingupintegralrepresentationsWhatkindofquantitiescanbecalculatedbydefiniteintegrals?Howcanwesetuptheintegralrepresentations?2QuestionsManyquantitieswewanttoknowinscienceandtechnologycanbecalculatedbydefiniteintegrals.Methodofelementsforsettingupintegralrepresentations3Wehadseenthattheareaoftrapezoidwithcurvedtop,themassofastickandthedisplacementofamovementalongastraightlinecanallbeexpressedbydefiniteintegrals.Theybothhavethefollowingproperties.1)Theyarealldistributednon-uniformlybutcontinuouslyonaninterval[a,b]2)Thesequantitiesarealladditive,thatis,thetotalquantityontheinterval[a,b]equalsthesumofallthoselocalquantitiesdistributedonthesubintervalsof[a,b].Ingeneral,aquantitywiththesetwocharacteristicsmaybecalculatedbyadefiniteintegral.Methodofelementsforsettingupintegralrepresentations4Inordertocalculatethewholearea,wewillfirstfindtheapproximatevalueofeverylocalarea.Todothis,weneedtwosteps:(1)“partition”Divide[a,b]intomanyverysmallsubintervals;(2)“homogenization”Regardthelocalareadistributedoneachsmallinterval[x,x+Δx]asarectanglewithheightf(x).Usingmultiplicationfortheuniformdistribution,wehaveMethodofelementsforsettingupintegralrepresentations5Afterwefoundtheapproximationvalueofeverylocalarea,wecaneasilyobtaintheprecisevalueofthewholeareaAbytheothertwosteps:(3)“summation”(4)“precision”Becausethefunction

f(x)iscontinuouson[a,b],thelimitofthesumisjustthedefiniteintegral.Methodofelementsforsettingupintegralrepresentations6Sothelocalarea

isjusttheincrementofthisfunction.SinceBythegeometricmeaningofthedefiniteintegralwithvaryingupperlimit,weknownthattheareaofthedefiniteintegralwiththecurve

y=f(x)andontheInterval[a,x]isexpressedby,namelytheapproximatevalueofthelocalarea,isactuallythedifferentialofthefunction(1).Methodofelementsforsettingupintegralrepresentations7Ingeneral,theproceduresmaybesimplifiedintothefollowingtwosteps:(1)FindtheelementFindtheapproximatevalueofthelocalrequiredquantity,dQ,onthesubinterval(2)SetuptheintegrationForthedifferential,writedownthecorrespondingdefiniteintegralovertheinterval,weobtainInfinitesimalelementoftheintegralorelementoftheintegralTheproceduresummarizedbytheabovetwostepsiscalledtheelementmethodofintegration.TheAreaofaPlaneRegion8ExampleFindtheareaAoftheregionenclosedbytheparabolasandSolutionFromthesystemwecaneasilyobtaintheabscissaeoftheintersectionsofthetwoparabolas,ItiseasytoseethattheareaAisdistributedcontinuouslybutnon-uniformontheinterval[-2,2],andisadditive.TheAreaofaPlaneRegion9Solution(continued)Bythemethodofelement,wecalculateA

bytwosteps:(1)FindtheelementPartitiontheinterval[-2,2]andconsiderthesubinterval[x,x+dx].Onthissubinterval,theareadistributednon-uniformlymayberegardedapproximatelyasuniform,thatisarectanglewithheightExampleFindtheareaAoftheregionenclosedbytheparabolasandTheAreaofaPlaneRegion10Solution(continued)Thus,weobtaintheelementofarea:ExampleFindtheareaAoftheregionenclosedbytheparabolasand(1)Findtheelement(2)SetuptheintegralTheAreaofaPlaneRegion11Solution(continued)overtheinterval[-2,2].ThewholeareaAisjusttheintegraloftheelementSoFinish.ExampleFindtheareaAoftheregionenclosedbytheparabolasandTheAreaofaPlaneRegion12ExampleFindtheareaAoftheregionenclosedbytheparabolaandthestraightlinesSolutionThisareaAmayberegardedasaquantitywhichisdistributednon-uniformlyontheinterval[0,1]onthey-axis.Tofindtheelementofthearea,partitiontheinterval[0,1],andconsiderthesubinterval,regardingastheareaofarectanglewithwidthTheAreaofaPlaneRegion13Solution(continued)Hence,thetotalareaisThentheelementoftheareaisFinish.ExampleFindtheareaAoftheregionenclosedbytheparabolaandthestraightlinesTheAreaofaPlaneRegion14ExampleFindtheareaAoftheregionenclosedbythecardioidSolutionBythesymmetryofthegraphofthecardioid,itisenoughtocalculatethearealocatedintheupperhalf-plane.Sincetheequationofthecardioidisexpressedinpolarcoordinates,theareamayberegardedasadistributionontheinterval[0,π]andthedistributionisnon-uniform.TheAreaofaPlaneRegion15Solution(continued)Tocalculatethearea,wepartitiontheinterval[0,π]andconsiderthesubintervalOnthisinterval,weregardasAconstant.ThustheelementofareaisExampleFindtheareaAoftheregionenclosedbythecardioidTheAreaofaPlaneRegion16Solution(continued)Thus,thetotalareaisFinish.ExampleFindtheareaAoftheregionenclosedbythecardioidTheAreaofaPlaneRegion17yxOExampleFindtheareaAoftheregionenclosedbythecurveandthex-axis.Solution18TheArcLengthofaPlaneCurveTostudymotionalongaspacecurve,weneedtohavea

measurablelengthalongthecurve.xyOM0Mba19TheArcLengthofaPlaneCurvexyOMi-1Mi(1)Findtheelementofthearclength20TheArcLengthofaPlaneCurve(2)SetuptheintegrationxyOMi-1Mi21TheArcLengthofaPlaneCurveArcLengthforasmoothcurveinthecaseoftherectangularcoordinates1)IftheequationoftheplanecurveΓis

thenthelengthofthearcΓis

2)IftheequationoftheplanecurveΓis

thenthelengthofthearcΓis

TheArcLengthofaPlaneCurve22ExampleFindthearclengthoftheplanecurve23TheArcLengthofaPlaneCurveExample

Findthelengthofanarcoftheplanecurve24TheArcLengthofaPlaneCurveArcLengthforaSmoothCurveinthecaseoftheparametricform

IftheequationoftheplanecurveΓis

thenthelengthofthearcΓis

whereφ(t)andψ(t)arecontinuouslyderivable,and(φ`(t),ψ`(t))≠0,25ExampleFindthelengthofanarcofthecycloidTheArcLengthofaPlaneCurve26TheArcLengthofaPlaneCurveArcLengthforaSmoothCurveinthecaseofthepolarcoordinatesIfΓisexpressedinpolarcoordinates,thenthelengthofthearcΓis

27TheArcLengthofaPlaneCurveExampleFindthelengthofanarcoftheplanecurveTheVolumeofaSolid28ExampleConsiderasolidliketheoneshowninthefollowingfigure.Ateachthecrosssectionofthesolidisaregionwhoseareaisaknowncontinuousfunction.Expressthevolumeofthissolidbyanintegration.SolutionWepartition[a,b]sothatthesolidcanbecutintomanyslicesbyperpendicularplanesthroughthePointsofthepartition.Considertheslicecorrespondingtothesubinterval.Wehavetheelementofvolume(1)Findtheelementofthevolume.TheVolumeofaSolid29Solution(continued)Bythemethodofelementsweobtainthevolumeofthegivensolidasfollows(2)Setuptheintegration.ExampleConsiderasolidliketheoneshowninthefollowingfigure.Ateachthecrosssectionofthesolidisaregionwhoseareaisaknowncontinuousfunction.Expressthevolumeofthissolidbyanintegration.TheVolumeofaSolid30HowtoFindVolumesbytheMethodofSlicingStep1.Sketchthesolidandatypicalcrosssection.Step2.FindaformulaforA(x).Step3.Findthelimitsofintegration.Step4.IntegrateA(x)tofindthevolume.TheVolumeofaSolid31ExampleAcurvedwedgeiscutfromacylinderofradius3bytwoplanes.Oneplaneisperpendiculartotheaxisofthecylinder.Thesecondplanecrossesthefirstplaneata45oangleatthecenterofthecylinder.Findthevolumeofthewedge.SolutionWedrawthewedgeandsketchatypicalcrosssectionperpendiculartothex-axis.Thecrosssectionatxisarectangleofarea(1)Asketch.(2)TheformulaforA(x).TheVolumeofaSolid32Solution(continued)(4)Integratetofindthevolume.Therectanglesrunfromto(3)Thelimitsofintegration.Finish.ExampleAcurvedwedgeiscutfromacylinderofradius3bytwoplanes.Oneplaneisperpendiculartotheaxisofthecylinder.Thesecondplanecrossesthefirstplaneata45oangleatthecenterofthecylinder.Findthevolumeofthewedge.TheVolumeofaSolid33Themostcommonapplicationofthemethodofslicingistosolidsofrevolution[旋轉(zhuǎn)體].SolidsofrevolutionaresolidswhoseshapescanbegeneratedbyrevolvingplaneRegionsaboutaxes.TheonlythingthatchangeswhenthecrosssectionsarecircularistheformulafortheareaA(x).TheVolumeofaSolid34ThetypicalcrosssectionofthesolidperpendiculartotheaxisofrevolutionisadiskofradiusR(x)andareaForthisreason,themethodisoftencalledthediskmethod.TheVolumeofaSolid35ExampleTheregionbetweenthecurve,andthex-axisisrevolvedaboutthex-axistogenerateasolid.Finditsvolume.TheVolumeofaSolid36SolutionWedrawfiguresshowingtheregion,atypicalradius,andthegeneratedsolid.ThevolumeisFinish.ExampleTheregionbetweenthecurve,andthex-axisisrevolvedaboutthex-axistogenerateasolid.Finditsvolume.TheVolumeofaSolid37ExampleFindthevolumeofthesolidgeneratedbyrevolvingaregionboundedbyandthelines,abouttheline.TheVolumeofaSolid38SolutionWedrawfiguresshowingtheregion,atypicalradius,andthegeneratedsolid.ThevolumeisFinish.ExampleFindthevolumeofthesolidgeneratedbyrevolvingaregionboundedbyandthelines,abouttheline.TheVolumeofaSolid39HowtoFindVolumesforCircularCrossSections(DiskMethod)Step1.DrawtheregionandidentifytheradiusfunctionR(x).Step2.SquareR(x)andmultiplybyπ.Step3.Integratetofindthevolume.TheVolumeofaSolid40ExampleFindthevolumeofthesolidgeneratedbyrevolvingaregionbetweenthey-axisandthecurve,,aboutthey-axis.TheVolumeofaSolid41SolutionWedrawfiguresshowingtheregion,atypicalradius,andthegeneratedsolid.ThevolumeisFinish.ExampleFindthevolumeofthesolidgeneratedbyrevolvingaregionbetweenthey-axisandthecurve,,aboutthey-axis.TheVolumeofaSolid42Iftheregionwerevolvetogenerateasoliddoesnotborderonorcrosstheaxisofrevolution,thesolidhasaholeinit.Thecrosssectionsperpendiculartotheaxisofrevolutionarewashersinsteadofdisks.ThedimensionsofatypicalwasherareOuterradius:Innerradius:Thewasher’sareaisTheVolumeofaSolid43HowtoFindVolumesforWasherCrossSectionsStep1.Drawtheregionandsketchalinesegmentacrossitperpendiculartotheaxisofrevolution.Whentheregionisrevolved,thissegmentwillgenerateatypicalwashercrosssectionofthegeneratesolid.Step2.Findthelimitsofintegration.

Step3.Findtheouterandinnerradiiofthewashersweptoutbythelinesegment.Step4.Integratetofindthevolume.TheVolumeofaSolid44ExampleTheregionboundedbythecurveandthelineisrevolvedaboutthex-axistogenerateasolid.Findthevolumeofthesolid.Solution

Step1.Drawtheregionandsketchalinesegmentacrossitperpendiculartotheaxisofrevolution.TheVolumeofaSolid45Solution(continued)

Step2.Findthelimitsofintegrationbyfindingthex-coordinatesoftheintersectionpointsofthecurveandthelineinrightfigure.ExampleTheregionboundedbythecurveandthelineisrevolvedaboutthex-axistogenerateasolid.Findthevolumeofthesolid.TheVolumeofaSolid46Solution(continued)

Outerradius:Innerradius:Step3.Findtheouterandinnerradiiofthewasherthatwouldbesweptoutbythelinesegmentifitwererevolvedaboutthex-axisalongwiththeregion.ExampleTheregionboundedbythecurveandthelineisrevolvedaboutthex-axistogenerateasolid.Findthevolumeofthesolid.TheVolumeofaSolid47Solution(continued)Step4.Evaluatethevolumeintegral.Finish.ExampleTheregionboundedbythecurveandthelineisrevolvedaboutthex-axistogenerateasolid.Findthevolumeofthesolid.Theapplicationsofthedefiniteintegralinphysics48PumpingLiquidsfromContainersHowmuchworkdoesittaketopumpallorpartoftheliquidfromacontainer?Tofindout,weimagineliftingtheliquidoutonethinhorizontalslabatatimeandapplyingtheequationW=Fdtoeachslab,whereFistheforceanddisthedistanceoftheobjectalongwiththedirectionofF.Wethenevaluatetheintegralthisleadtoastheslabsbecomethinnerandmorenumerous.Theintegralwegeteachtimedependsontheweightoftheliquidandthedimensionsofthecontainer,butthewaywefindtheintegralisalwaysthesame.Theapplicationsofthedefiniteintegralinphysics49ExampleHowmuchworkdoesittaketopumpthewaterfromafulluprightcircularcylindricaltankofradius5mandheight10mtoalevelof4mabovethetopofthetank?SolutionWedrawthetankasrightfigure,addcoordinateaxes,andi

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論