版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Section5.5ApplicationsofDefiniteIntegralsMethodofelementsforsettingupintegralrepresentationsWhatkindofquantitiescanbecalculatedbydefiniteintegrals?Howcanwesetuptheintegralrepresentations?2QuestionsManyquantitieswewanttoknowinscienceandtechnologycanbecalculatedbydefiniteintegrals.Methodofelementsforsettingupintegralrepresentations3Wehadseenthattheareaoftrapezoidwithcurvedtop,themassofastickandthedisplacementofamovementalongastraightlinecanallbeexpressedbydefiniteintegrals.Theybothhavethefollowingproperties.1)Theyarealldistributednon-uniformlybutcontinuouslyonaninterval[a,b]2)Thesequantitiesarealladditive,thatis,thetotalquantityontheinterval[a,b]equalsthesumofallthoselocalquantitiesdistributedonthesubintervalsof[a,b].Ingeneral,aquantitywiththesetwocharacteristicsmaybecalculatedbyadefiniteintegral.Methodofelementsforsettingupintegralrepresentations4Inordertocalculatethewholearea,wewillfirstfindtheapproximatevalueofeverylocalarea.Todothis,weneedtwosteps:(1)“partition”Divide[a,b]intomanyverysmallsubintervals;(2)“homogenization”Regardthelocalareadistributedoneachsmallinterval[x,x+Δx]asarectanglewithheightf(x).Usingmultiplicationfortheuniformdistribution,wehaveMethodofelementsforsettingupintegralrepresentations5Afterwefoundtheapproximationvalueofeverylocalarea,wecaneasilyobtaintheprecisevalueofthewholeareaAbytheothertwosteps:(3)“summation”(4)“precision”Becausethefunction
f(x)iscontinuouson[a,b],thelimitofthesumisjustthedefiniteintegral.Methodofelementsforsettingupintegralrepresentations6Sothelocalarea
isjusttheincrementofthisfunction.SinceBythegeometricmeaningofthedefiniteintegralwithvaryingupperlimit,weknownthattheareaofthedefiniteintegralwiththecurve
y=f(x)andontheInterval[a,x]isexpressedby,namelytheapproximatevalueofthelocalarea,isactuallythedifferentialofthefunction(1).Methodofelementsforsettingupintegralrepresentations7Ingeneral,theproceduresmaybesimplifiedintothefollowingtwosteps:(1)FindtheelementFindtheapproximatevalueofthelocalrequiredquantity,dQ,onthesubinterval(2)SetuptheintegrationForthedifferential,writedownthecorrespondingdefiniteintegralovertheinterval,weobtainInfinitesimalelementoftheintegralorelementoftheintegralTheproceduresummarizedbytheabovetwostepsiscalledtheelementmethodofintegration.TheAreaofaPlaneRegion8ExampleFindtheareaAoftheregionenclosedbytheparabolasandSolutionFromthesystemwecaneasilyobtaintheabscissaeoftheintersectionsofthetwoparabolas,ItiseasytoseethattheareaAisdistributedcontinuouslybutnon-uniformontheinterval[-2,2],andisadditive.TheAreaofaPlaneRegion9Solution(continued)Bythemethodofelement,wecalculateA
bytwosteps:(1)FindtheelementPartitiontheinterval[-2,2]andconsiderthesubinterval[x,x+dx].Onthissubinterval,theareadistributednon-uniformlymayberegardedapproximatelyasuniform,thatisarectanglewithheightExampleFindtheareaAoftheregionenclosedbytheparabolasandTheAreaofaPlaneRegion10Solution(continued)Thus,weobtaintheelementofarea:ExampleFindtheareaAoftheregionenclosedbytheparabolasand(1)Findtheelement(2)SetuptheintegralTheAreaofaPlaneRegion11Solution(continued)overtheinterval[-2,2].ThewholeareaAisjusttheintegraloftheelementSoFinish.ExampleFindtheareaAoftheregionenclosedbytheparabolasandTheAreaofaPlaneRegion12ExampleFindtheareaAoftheregionenclosedbytheparabolaandthestraightlinesSolutionThisareaAmayberegardedasaquantitywhichisdistributednon-uniformlyontheinterval[0,1]onthey-axis.Tofindtheelementofthearea,partitiontheinterval[0,1],andconsiderthesubinterval,regardingastheareaofarectanglewithwidthTheAreaofaPlaneRegion13Solution(continued)Hence,thetotalareaisThentheelementoftheareaisFinish.ExampleFindtheareaAoftheregionenclosedbytheparabolaandthestraightlinesTheAreaofaPlaneRegion14ExampleFindtheareaAoftheregionenclosedbythecardioidSolutionBythesymmetryofthegraphofthecardioid,itisenoughtocalculatethearealocatedintheupperhalf-plane.Sincetheequationofthecardioidisexpressedinpolarcoordinates,theareamayberegardedasadistributionontheinterval[0,π]andthedistributionisnon-uniform.TheAreaofaPlaneRegion15Solution(continued)Tocalculatethearea,wepartitiontheinterval[0,π]andconsiderthesubintervalOnthisinterval,weregardasAconstant.ThustheelementofareaisExampleFindtheareaAoftheregionenclosedbythecardioidTheAreaofaPlaneRegion16Solution(continued)Thus,thetotalareaisFinish.ExampleFindtheareaAoftheregionenclosedbythecardioidTheAreaofaPlaneRegion17yxOExampleFindtheareaAoftheregionenclosedbythecurveandthex-axis.Solution18TheArcLengthofaPlaneCurveTostudymotionalongaspacecurve,weneedtohavea
measurablelengthalongthecurve.xyOM0Mba19TheArcLengthofaPlaneCurvexyOMi-1Mi(1)Findtheelementofthearclength20TheArcLengthofaPlaneCurve(2)SetuptheintegrationxyOMi-1Mi21TheArcLengthofaPlaneCurveArcLengthforasmoothcurveinthecaseoftherectangularcoordinates1)IftheequationoftheplanecurveΓis
thenthelengthofthearcΓis
2)IftheequationoftheplanecurveΓis
thenthelengthofthearcΓis
TheArcLengthofaPlaneCurve22ExampleFindthearclengthoftheplanecurve23TheArcLengthofaPlaneCurveExample
Findthelengthofanarcoftheplanecurve24TheArcLengthofaPlaneCurveArcLengthforaSmoothCurveinthecaseoftheparametricform
IftheequationoftheplanecurveΓis
thenthelengthofthearcΓis
whereφ(t)andψ(t)arecontinuouslyderivable,and(φ`(t),ψ`(t))≠0,25ExampleFindthelengthofanarcofthecycloidTheArcLengthofaPlaneCurve26TheArcLengthofaPlaneCurveArcLengthforaSmoothCurveinthecaseofthepolarcoordinatesIfΓisexpressedinpolarcoordinates,thenthelengthofthearcΓis
27TheArcLengthofaPlaneCurveExampleFindthelengthofanarcoftheplanecurveTheVolumeofaSolid28ExampleConsiderasolidliketheoneshowninthefollowingfigure.Ateachthecrosssectionofthesolidisaregionwhoseareaisaknowncontinuousfunction.Expressthevolumeofthissolidbyanintegration.SolutionWepartition[a,b]sothatthesolidcanbecutintomanyslicesbyperpendicularplanesthroughthePointsofthepartition.Considertheslicecorrespondingtothesubinterval.Wehavetheelementofvolume(1)Findtheelementofthevolume.TheVolumeofaSolid29Solution(continued)Bythemethodofelementsweobtainthevolumeofthegivensolidasfollows(2)Setuptheintegration.ExampleConsiderasolidliketheoneshowninthefollowingfigure.Ateachthecrosssectionofthesolidisaregionwhoseareaisaknowncontinuousfunction.Expressthevolumeofthissolidbyanintegration.TheVolumeofaSolid30HowtoFindVolumesbytheMethodofSlicingStep1.Sketchthesolidandatypicalcrosssection.Step2.FindaformulaforA(x).Step3.Findthelimitsofintegration.Step4.IntegrateA(x)tofindthevolume.TheVolumeofaSolid31ExampleAcurvedwedgeiscutfromacylinderofradius3bytwoplanes.Oneplaneisperpendiculartotheaxisofthecylinder.Thesecondplanecrossesthefirstplaneata45oangleatthecenterofthecylinder.Findthevolumeofthewedge.SolutionWedrawthewedgeandsketchatypicalcrosssectionperpendiculartothex-axis.Thecrosssectionatxisarectangleofarea(1)Asketch.(2)TheformulaforA(x).TheVolumeofaSolid32Solution(continued)(4)Integratetofindthevolume.Therectanglesrunfromto(3)Thelimitsofintegration.Finish.ExampleAcurvedwedgeiscutfromacylinderofradius3bytwoplanes.Oneplaneisperpendiculartotheaxisofthecylinder.Thesecondplanecrossesthefirstplaneata45oangleatthecenterofthecylinder.Findthevolumeofthewedge.TheVolumeofaSolid33Themostcommonapplicationofthemethodofslicingistosolidsofrevolution[旋轉(zhuǎn)體].SolidsofrevolutionaresolidswhoseshapescanbegeneratedbyrevolvingplaneRegionsaboutaxes.TheonlythingthatchangeswhenthecrosssectionsarecircularistheformulafortheareaA(x).TheVolumeofaSolid34ThetypicalcrosssectionofthesolidperpendiculartotheaxisofrevolutionisadiskofradiusR(x)andareaForthisreason,themethodisoftencalledthediskmethod.TheVolumeofaSolid35ExampleTheregionbetweenthecurve,andthex-axisisrevolvedaboutthex-axistogenerateasolid.Finditsvolume.TheVolumeofaSolid36SolutionWedrawfiguresshowingtheregion,atypicalradius,andthegeneratedsolid.ThevolumeisFinish.ExampleTheregionbetweenthecurve,andthex-axisisrevolvedaboutthex-axistogenerateasolid.Finditsvolume.TheVolumeofaSolid37ExampleFindthevolumeofthesolidgeneratedbyrevolvingaregionboundedbyandthelines,abouttheline.TheVolumeofaSolid38SolutionWedrawfiguresshowingtheregion,atypicalradius,andthegeneratedsolid.ThevolumeisFinish.ExampleFindthevolumeofthesolidgeneratedbyrevolvingaregionboundedbyandthelines,abouttheline.TheVolumeofaSolid39HowtoFindVolumesforCircularCrossSections(DiskMethod)Step1.DrawtheregionandidentifytheradiusfunctionR(x).Step2.SquareR(x)andmultiplybyπ.Step3.Integratetofindthevolume.TheVolumeofaSolid40ExampleFindthevolumeofthesolidgeneratedbyrevolvingaregionbetweenthey-axisandthecurve,,aboutthey-axis.TheVolumeofaSolid41SolutionWedrawfiguresshowingtheregion,atypicalradius,andthegeneratedsolid.ThevolumeisFinish.ExampleFindthevolumeofthesolidgeneratedbyrevolvingaregionbetweenthey-axisandthecurve,,aboutthey-axis.TheVolumeofaSolid42Iftheregionwerevolvetogenerateasoliddoesnotborderonorcrosstheaxisofrevolution,thesolidhasaholeinit.Thecrosssectionsperpendiculartotheaxisofrevolutionarewashersinsteadofdisks.ThedimensionsofatypicalwasherareOuterradius:Innerradius:Thewasher’sareaisTheVolumeofaSolid43HowtoFindVolumesforWasherCrossSectionsStep1.Drawtheregionandsketchalinesegmentacrossitperpendiculartotheaxisofrevolution.Whentheregionisrevolved,thissegmentwillgenerateatypicalwashercrosssectionofthegeneratesolid.Step2.Findthelimitsofintegration.
Step3.Findtheouterandinnerradiiofthewashersweptoutbythelinesegment.Step4.Integratetofindthevolume.TheVolumeofaSolid44ExampleTheregionboundedbythecurveandthelineisrevolvedaboutthex-axistogenerateasolid.Findthevolumeofthesolid.Solution
Step1.Drawtheregionandsketchalinesegmentacrossitperpendiculartotheaxisofrevolution.TheVolumeofaSolid45Solution(continued)
Step2.Findthelimitsofintegrationbyfindingthex-coordinatesoftheintersectionpointsofthecurveandthelineinrightfigure.ExampleTheregionboundedbythecurveandthelineisrevolvedaboutthex-axistogenerateasolid.Findthevolumeofthesolid.TheVolumeofaSolid46Solution(continued)
Outerradius:Innerradius:Step3.Findtheouterandinnerradiiofthewasherthatwouldbesweptoutbythelinesegmentifitwererevolvedaboutthex-axisalongwiththeregion.ExampleTheregionboundedbythecurveandthelineisrevolvedaboutthex-axistogenerateasolid.Findthevolumeofthesolid.TheVolumeofaSolid47Solution(continued)Step4.Evaluatethevolumeintegral.Finish.ExampleTheregionboundedbythecurveandthelineisrevolvedaboutthex-axistogenerateasolid.Findthevolumeofthesolid.Theapplicationsofthedefiniteintegralinphysics48PumpingLiquidsfromContainersHowmuchworkdoesittaketopumpallorpartoftheliquidfromacontainer?Tofindout,weimagineliftingtheliquidoutonethinhorizontalslabatatimeandapplyingtheequationW=Fdtoeachslab,whereFistheforceanddisthedistanceoftheobjectalongwiththedirectionofF.Wethenevaluatetheintegralthisleadtoastheslabsbecomethinnerandmorenumerous.Theintegralwegeteachtimedependsontheweightoftheliquidandthedimensionsofthecontainer,butthewaywefindtheintegralisalwaysthesame.Theapplicationsofthedefiniteintegralinphysics49ExampleHowmuchworkdoesittaketopumpthewaterfromafulluprightcircularcylindricaltankofradius5mandheight10mtoalevelof4mabovethetopofthetank?SolutionWedrawthetankasrightfigure,addcoordinateaxes,andi
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程部年終總結(jié)報(bào)告
- 二零二五年度合資成立人工智能技術(shù)研發(fā)合作協(xié)議3篇
- 第一次月考測(cè)評(píng)卷Lesson1 ~ lesson3-2024-2025學(xué)年科普版(三起)英語(yǔ)四年級(jí)上冊(cè)含答案
- 貴州師范大學(xué)《播音創(chuàng)作基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- Unit 1 How can I get there?(說(shuō)課稿)-2024-2025學(xué)年人教PEP版英語(yǔ)六年級(jí)上冊(cè)
- 貴州黔南經(jīng)濟(jì)學(xué)院《動(dòng)畫表演》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度建筑工程債權(quán)轉(zhuǎn)讓與安全文明施工協(xié)議3篇
- DB32-T 1264-2024 天目湖白茶質(zhì)量分級(jí)
- 貴州理工學(xué)院《模擬電子學(xué)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州農(nóng)業(yè)職業(yè)學(xué)院《電路理論》2023-2024學(xué)年第一學(xué)期期末試卷
- 《人力資源情緒管理問(wèn)題研究開題報(bào)告(含提綱)》
- 哮喘吸入裝置的正確使用方法課件
- 2023年成都東部集團(tuán)有限公司招聘筆試題庫(kù)及答案解析
- 角點(diǎn)網(wǎng)格一.角點(diǎn)網(wǎng)格定義
- 聚酯合成反應(yīng)動(dòng)力學(xué)
- 自動(dòng)控制原理全套課件
- 視頻監(jiān)控室值班記錄表
- 歌曲《梁?!泛?jiǎn)譜完整版
- 小學(xué)語(yǔ)文教研組期末考試質(zhì)量分析
- 校園安全存在問(wèn)題及對(duì)策
- 鉆井作業(yè)常見安全隱患
評(píng)論
0/150
提交評(píng)論