![安徽省定遠(yuǎn)縣民族私立中學(xué)2023屆高三第五次(1月)月考數(shù)學(xué)試題_第1頁](http://file4.renrendoc.com/view/f8fe8e9055963a2abd045a6ac63aa007/f8fe8e9055963a2abd045a6ac63aa0071.gif)
![安徽省定遠(yuǎn)縣民族私立中學(xué)2023屆高三第五次(1月)月考數(shù)學(xué)試題_第2頁](http://file4.renrendoc.com/view/f8fe8e9055963a2abd045a6ac63aa007/f8fe8e9055963a2abd045a6ac63aa0072.gif)
![安徽省定遠(yuǎn)縣民族私立中學(xué)2023屆高三第五次(1月)月考數(shù)學(xué)試題_第3頁](http://file4.renrendoc.com/view/f8fe8e9055963a2abd045a6ac63aa007/f8fe8e9055963a2abd045a6ac63aa0073.gif)
![安徽省定遠(yuǎn)縣民族私立中學(xué)2023屆高三第五次(1月)月考數(shù)學(xué)試題_第4頁](http://file4.renrendoc.com/view/f8fe8e9055963a2abd045a6ac63aa007/f8fe8e9055963a2abd045a6ac63aa0074.gif)
![安徽省定遠(yuǎn)縣民族私立中學(xué)2023屆高三第五次(1月)月考數(shù)學(xué)試題_第5頁](http://file4.renrendoc.com/view/f8fe8e9055963a2abd045a6ac63aa007/f8fe8e9055963a2abd045a6ac63aa0075.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽省定遠(yuǎn)縣民族私立中學(xué)2023屆高三第五次(1月)月考數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.2.已知集合,,則()A. B. C. D.3.某個(gè)命題與自然數(shù)有關(guān),且已證得“假設(shè)時(shí)該命題成立,則時(shí)該命題也成立”.現(xiàn)已知當(dāng)時(shí),該命題不成立,那么()A.當(dāng)時(shí),該命題不成立 B.當(dāng)時(shí),該命題成立C.當(dāng)時(shí),該命題不成立 D.當(dāng)時(shí),該命題成立4.命題:存在實(shí)數(shù),對(duì)任意實(shí)數(shù),使得恒成立;:,為奇函數(shù),則下列命題是真命題的是()A. B. C. D.5.從某市的中學(xué)生中隨機(jī)調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖:根據(jù)頻率分布直方圖,可知這部分男生的身高的中位數(shù)的估計(jì)值為A. B.C. D.6.已知展開式的二項(xiàng)式系數(shù)和與展開式中常數(shù)項(xiàng)相等,則項(xiàng)系數(shù)為()A.10 B.32 C.40 D.807.若集合,,則下列結(jié)論正確的是()A. B. C. D.8.已知集合,則集合()A. B. C. D.9.一個(gè)算法的程序框圖如圖所示,若該程序輸出的結(jié)果是,則判斷框中應(yīng)填入的條件是()A. B. C. D.10.已知拋物線:()的焦點(diǎn)為,為該拋物線上一點(diǎn),以為圓心的圓與的準(zhǔn)線相切于點(diǎn),,則拋物線方程為()A. B. C. D.11.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.12.已知函數(shù)(,)的一個(gè)零點(diǎn)是,函數(shù)圖象的一條對(duì)稱軸是直線,則當(dāng)取得最小值時(shí),函數(shù)的單調(diào)遞增區(qū)間是()A.() B.()C.() D.()二、填空題:本題共4小題,每小題5分,共20分。13.如圖,養(yǎng)殖公司欲在某湖邊依托互相垂直的湖岸線、圍成一個(gè)三角形養(yǎng)殖區(qū).為了便于管理,在線段之間有一觀察站點(diǎn),到直線,的距離分別為8百米、1百米,則觀察點(diǎn)到點(diǎn)、距離之和的最小值為______________百米.14.在直角坐標(biāo)系中,已知點(diǎn)和點(diǎn),若點(diǎn)在的平分線上,且,則向量的坐標(biāo)為___________.15.已知,滿足約束條件,則的最小值為__________.16.安排名男生和名女生參與完成項(xiàng)工作,每人參與一項(xiàng),每項(xiàng)工作至少由名男生和名女生完成,則不同的安排方式共有________種(用數(shù)字作答).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,且過點(diǎn),點(diǎn)在第一象限,為左頂點(diǎn),為下頂點(diǎn),交軸于點(diǎn),交軸于點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若,求點(diǎn)的坐標(biāo).18.(12分)如圖,三棱臺(tái)中,側(cè)面與側(cè)面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.19.(12分)在直角坐標(biāo)系中,長為3的線段的兩端點(diǎn)分別在軸、軸上滑動(dòng),點(diǎn)為線段上的點(diǎn),且滿足.記點(diǎn)的軌跡為曲線.(1)求曲線的方程;(2)若點(diǎn)為曲線上的兩個(gè)動(dòng)點(diǎn),記,判斷是否存在常數(shù)使得點(diǎn)到直線的距離為定值?若存在,求出常數(shù)的值和這個(gè)定值;若不存在,請(qǐng)說明理由.20.(12分)已知函數(shù).(1)設(shè),若存在兩個(gè)極值點(diǎn),,且,求證:;(2)設(shè),在不單調(diào),且恒成立,求的取值范圍.(為自然對(duì)數(shù)的底數(shù)).21.(12分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個(gè)半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計(jì)劃建造一條自小鎮(zhèn)經(jīng)小島至對(duì)岸的水上通道(圖中粗線部分折線段,在右側(cè)),為保護(hù)小島,段設(shè)計(jì)成與圓相切.設(shè).(1)試將通道的長表示成的函數(shù),并指出定義域;(2)若建造通道的費(fèi)用是每公里100萬元,則建造此通道最少需要多少萬元?22.(10分)設(shè)橢圓的左右焦點(diǎn)分別為,離心率,右準(zhǔn)線為,是上的兩個(gè)動(dòng)點(diǎn),.(Ⅰ)若,求的值;(Ⅱ)證明:當(dāng)取最小值時(shí),與共線.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
幾何體是由一個(gè)圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計(jì)算得到答案.【詳解】幾何體是由一個(gè)圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點(diǎn)睛】本題考查了根據(jù)三視圖求表面積,意在考查學(xué)生的計(jì)算能力和空間想象能力.2、B【解析】
求出集合,利用集合的基本運(yùn)算即可得到結(jié)論.【詳解】由,得,則集合,所以,.故選:B.【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,利用函數(shù)的性質(zhì)求出集合是解決本題的關(guān)鍵,屬于基礎(chǔ)題.3、C【解析】
寫出命題“假設(shè)時(shí)該命題成立,則時(shí)該命題也成立”的逆否命題,結(jié)合原命題與逆否命題的真假性一致進(jìn)行判斷.【詳解】由逆否命題可知,命題“假設(shè)時(shí)該命題成立,則時(shí)該命題也成立”的逆否命題為“假設(shè)當(dāng)時(shí)該命題不成立,則當(dāng)時(shí)該命題也不成立”,由于當(dāng)時(shí),該命題不成立,則當(dāng)時(shí),該命題也不成立,故選:C.【點(diǎn)睛】本題考查逆否命題與原命題等價(jià)性的應(yīng)用,解題時(shí)要寫出原命題的逆否命題,結(jié)合逆否命題的等價(jià)性進(jìn)行判斷,考查邏輯推理能力,屬于中等題.4、A【解析】
分別判斷命題和的真假性,然后根據(jù)含有邏輯聯(lián)結(jié)詞命題的真假性判斷出正確選項(xiàng).【詳解】對(duì)于命題,由于,所以命題為真命題.對(duì)于命題,由于,由解得,且,所以是奇函數(shù),故為真命題.所以為真命題.、、都是假命題.故選:A【點(diǎn)睛】本小題主要考查誘導(dǎo)公式,考查函數(shù)的奇偶性,考查含有邏輯聯(lián)結(jié)詞命題真假性的判斷,屬于基礎(chǔ)題.5、C【解析】
由題可得,解得,則,,所以這部分男生的身高的中位數(shù)的估計(jì)值為,故選C.6、D【解析】
根據(jù)二項(xiàng)式定理通項(xiàng)公式可得常數(shù)項(xiàng),然后二項(xiàng)式系數(shù)和,可得,最后依據(jù),可得結(jié)果.【詳解】由題可知:當(dāng)時(shí),常數(shù)項(xiàng)為又展開式的二項(xiàng)式系數(shù)和為由所以當(dāng)時(shí),所以項(xiàng)系數(shù)為故選:D【點(diǎn)睛】本題考查二項(xiàng)式定理通項(xiàng)公式,熟悉公式,細(xì)心計(jì)算,屬基礎(chǔ)題.7、D【解析】
由題意,分析即得解【詳解】由題意,故,故選:D【點(diǎn)睛】本題考查了元素和集合,集合和集合之間的關(guān)系,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.8、D【解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點(diǎn)睛】本題考查集合的定義,涉及到解絕對(duì)值不等式,是一道基礎(chǔ)題.9、D【解析】
首先判斷循環(huán)結(jié)構(gòu)類型,得到判斷框內(nèi)的語句性質(zhì),然后對(duì)循環(huán)體進(jìn)行分析,找出循環(huán)規(guī)律,判斷輸出結(jié)果與循環(huán)次數(shù)以及的關(guān)系,最終得出選項(xiàng).【詳解】經(jīng)判斷此循環(huán)為“直到型”結(jié)構(gòu),判斷框?yàn)樘鲅h(huán)的語句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時(shí)退出循環(huán),根據(jù)判斷框內(nèi)為跳出循環(huán)的語句,,故選D.【點(diǎn)睛】題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時(shí)一定注意以下幾點(diǎn):(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時(shí)一定要正確控制循環(huán)次數(shù);(5)要注意各個(gè)框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計(jì)算,直到達(dá)到輸出條件即可.10、C【解析】
根據(jù)拋物線方程求得點(diǎn)的坐標(biāo),根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設(shè)在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準(zhǔn)線相切于點(diǎn),根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點(diǎn)睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.11、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.12、B【解析】
根據(jù)函數(shù)的一個(gè)零點(diǎn)是,得出,再根據(jù)是對(duì)稱軸,得出,求出的最小值與對(duì)應(yīng)的,寫出即可求出其單調(diào)增區(qū)間.【詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因?yàn)?,所以(?又,所以,所以,令(),則().因此,當(dāng)取得最小值時(shí),的單調(diào)遞增區(qū)間是().故選:B【點(diǎn)睛】此題考查三角函數(shù)的對(duì)稱軸和對(duì)稱點(diǎn),在對(duì)稱軸處取得最值,對(duì)稱點(diǎn)處函數(shù)值為零,屬于較易題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
建系,將直線用方程表示出來,再用參數(shù)表示出線段的長度,最后利用導(dǎo)數(shù)來求函數(shù)最小值.【詳解】以為原點(diǎn),所在直線分別作為軸,建立平面直角坐標(biāo)系,則.設(shè)直線,即,則,所以,所以,,則,則,當(dāng)時(shí),,則單調(diào)遞減,當(dāng)時(shí),,則單調(diào)遞增,所以當(dāng)時(shí),最短,此時(shí).故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的實(shí)際應(yīng)用,屬于中檔題.14、【解析】
點(diǎn)在的平分線可知與向量共線,利用線性運(yùn)算求解即可.【詳解】因?yàn)辄c(diǎn)在的平線上,所以存在使,而,可解得,所以,故答案為:【點(diǎn)睛】本題主要考查了向量的線性運(yùn)算,利用向量的坐標(biāo)求向量的模,屬于中檔題.15、【解析】
作出約束條件所表示的可行域,利用直線截距的幾何意義,即可得答案.【詳解】畫出可行域易知在點(diǎn)處取最小值為.故答案為:【點(diǎn)睛】本題考查簡單線性規(guī)劃的最值,考查數(shù)形結(jié)合思想,考查運(yùn)算求解能力,屬于基礎(chǔ)題.16、1296【解析】
先從4個(gè)男生選2個(gè)一組,將4人分成三組,然后從4個(gè)女生選2個(gè)一組,將4人分成三組,然后全排列即可.【詳解】由于每項(xiàng)工作至少由名男生和名女生完成,則先從4個(gè)男生選2個(gè)一組,將4人分成三組,所以男生的排法共有,同理女生的排法共有,故不同的安排共有種.故答案為:1296【點(diǎn)睛】本題主要考查了排列組合的應(yīng)用,考查了學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問題的能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由題意得,求出,進(jìn)而可得到橢圓的方程;(2)由(1)知點(diǎn),坐標(biāo),設(shè)直線的方程為,易知,可得點(diǎn)的坐標(biāo)為,聯(lián)立方程,得到關(guān)于的一元二次方程,結(jié)合根與系數(shù)關(guān)系,可用表示的坐標(biāo),進(jìn)而由三點(diǎn)共線,即,可用表示的坐標(biāo),再結(jié)合,可建立方程,從而求出的值,即可求得點(diǎn)的坐標(biāo).【詳解】(1)由題意得,解得,所以橢圓的方程為.(2)由(1)知點(diǎn),,由題意可設(shè)直線的斜率為,則,所以直線的方程為,則點(diǎn)的坐標(biāo)為,聯(lián)立方程,消去得:.設(shè),則,所以,所以,所以.設(shè)點(diǎn)的坐標(biāo)為,因?yàn)辄c(diǎn)三點(diǎn)共線,所以,即,所以,所以.因?yàn)椋?,即,所以,解得,又,所以符合題意,計(jì)算可得,,故點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,考查平行線的性質(zhì),考查學(xué)生的計(jì)算求解能力,屬于難題.18、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接,由比例可得∥,進(jìn)而得線面平行;(Ⅱ)過點(diǎn)作的垂線,建立空間直角坐標(biāo)系,不妨設(shè),則求得平面的法向量為,設(shè)平面的法向量為,由求二面角余弦即可.試題解析:(Ⅰ)證明:連接,梯形,,易知:;又,則∥;平面,平面,可得:∥平面;(Ⅱ)側(cè)面是梯形,,,,則為二面角的平面角,;均為正三角形,在平面內(nèi),過點(diǎn)作的垂線,如圖建立空間直角坐標(biāo)系,不妨設(shè),則,故點(diǎn),;設(shè)平面的法向量為,則有:;設(shè)平面的法向量為,則有:;,故平面與平面所成的銳二面角的余弦值為.19、(1)(2)存在;常數(shù),定值【解析】
(1)設(shè)出的坐標(biāo),利用以及,求得曲線的方程.(2)當(dāng)直線的斜率存在時(shí),設(shè)出直線的方程,求得到直線的距離.聯(lián)立直線的方程和曲線的方程,寫出根與系數(shù)關(guān)系,結(jié)合以及為定值,求得的值.當(dāng)直線的斜率不存在時(shí),驗(yàn)證.由此得到存在常數(shù),且定值.【詳解】(1)解析:(1)設(shè),,由題可得,解得又,即,消去得:(2)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為設(shè),由可得:由點(diǎn)到的距離為定值可得(為常數(shù))即得:即,又為定值時(shí),,此時(shí),且符合當(dāng)直線的斜率不存在時(shí),設(shè)直線方程為由題可得,時(shí),,經(jīng)檢驗(yàn),符合條件綜上可知,存在常數(shù),且定值【點(diǎn)睛】本小題主要考查軌跡方程的求法,考查直線和橢圓的位置關(guān)系,考查運(yùn)算求解能力,考查橢圓中的定值問題,屬于難題.20、(1)證明見解析;(2).【解析】
(1)先求出,又由可判斷出在上單調(diào)遞減,故,令,記,利用導(dǎo)數(shù)求出的最小值即可;(2)由在上不單調(diào)轉(zhuǎn)化為在上有解,可得,令,分類討論求的最大值,再求解即可.【詳解】(1)已知,,由可得,又由,知在上單調(diào)遞減,令,記,則在上單調(diào)遞增;,在上單調(diào)遞增;,(2),,在上不單調(diào),在上有正有負(fù),在上有解,,,恒成立,記,則,記,,在上單調(diào)增,在上單調(diào)減.于是知(i)當(dāng)即時(shí),恒成立,在上單調(diào)增,,,.(ii)當(dāng)時(shí),,故不滿足題意.綜上所述,【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的綜合應(yīng)用,考查了分類討論,轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運(yùn)算求解能力.21、(1),定義域是.(2)百萬【解析】
(1)以為原點(diǎn),直線為軸建立如圖所示的直角坐標(biāo)系,設(shè),利用直線與圓相切得到,再代入這一關(guān)系中,即可得答案;(2)利用導(dǎo)數(shù)求函數(shù)的最小值,即可得答案;【詳解】以為原點(diǎn),直線為軸建立如圖所示的直角坐標(biāo)系.設(shè),則,,.因?yàn)?,所以直線的方程為,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二手機(jī)器轉(zhuǎn)讓簡單合同范本年
- 施工工程運(yùn)輸合同范本
- 購買二手房買賣合同范本
- 2025cc直播平臺(tái)主播轉(zhuǎn)公會(huì)合同
- 二手商品房買賣合同
- 水泥銷售合同范本
- 石料買賣合同
- 2025續(xù)訂勞動(dòng)合同通知書模板
- 2025建筑企業(yè)流動(dòng)資金借款合同范本版
- 廣告發(fā)布投放合同
- 新《學(xué)前教育法》知識(shí)講座課件
- 公文寫作題庫(500道)
- 學(xué)校教學(xué)常規(guī)管理學(xué)習(xí)活動(dòng)課件
- 2024-2030年中國大閘蟹養(yǎng)殖行業(yè)運(yùn)營形勢(shì)分析及未來銷售格局研究報(bào)告
- 集成墻板購銷合同范本(2024版)
- 2023九年級(jí)歷史下冊(cè) 第三單元 第一次世界大戰(zhàn)和戰(zhàn)后初期的世界第10課《凡爾賽條約》和《九國公約》教案 新人教版
- 骨髓穿刺課件
- 2024中國保險(xiǎn)發(fā)展報(bào)告-中南大風(fēng)險(xiǎn)管理研究中心.燕道數(shù)科
- 元素的用途完整版本
- 建筑設(shè)計(jì)工程設(shè)計(jì)方案
- 供熱行業(yè)環(huán)境保護(hù)管理辦法
評(píng)論
0/150
提交評(píng)論