版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年廣東省汕頭市成考專(zhuān)升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.A.等價(jià)無(wú)窮小
B.f(x)是比g(x)高階無(wú)窮小
C.f(x)是比g(x)低階無(wú)窮小
D.f(x)與g(x)是同階但非等價(jià)無(wú)窮小
2.
3.下列命題不正確的是()。
A.兩個(gè)無(wú)窮大量之和仍為無(wú)窮大量
B.上萬(wàn)個(gè)無(wú)窮小量之和仍為無(wú)窮小量
C.兩個(gè)無(wú)窮大量之積仍為無(wú)窮大量
D.兩個(gè)有界變量之和仍為有界變量
4.
5.當(dāng)α<x<b時(shí),f'(x)<0,f'(x)>0。則在區(qū)間(α,b)內(nèi)曲線段y=f(x)的圖形A.A.沿x軸正向下降且為凹B.沿x軸正向下降且為凸C.沿x軸正向上升且為凹D.沿x軸正向上升且為凸
6.搖篩機(jī)如圖所示,已知O1B=O2B=0.4m,O1O2=AB,桿O1A按
規(guī)律擺動(dòng),(式中∮以rad計(jì),t以s計(jì))。則當(dāng)t=0和t=2s時(shí),關(guān)于篩面中點(diǎn)M的速度和加速度就散不正確的一項(xiàng)為()。
A.當(dāng)t=0時(shí),篩面中點(diǎn)M的速度大小為15.7cm/s
B.當(dāng)t=0時(shí),篩面中點(diǎn)M的法向加速度大小為6.17cm/s2
C.當(dāng)t=2s時(shí),篩面中點(diǎn)M的速度大小為0
D.當(dāng)t=2s時(shí),篩面中點(diǎn)M的切向加速度大小為12.3cm/s2
7.A.A.4/3B.1C.2/3D.1/3
8.
9.設(shè)y=exsinx,則y'''=A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
10.談判是雙方或多方為實(shí)現(xiàn)某種目標(biāo)就有關(guān)條件()的過(guò)程。
A.達(dá)成協(xié)議B.爭(zhēng)取利益C.避免沖突D.不斷協(xié)商
11.
12.
13.
14.A.充分條件B.必要條件C.充要條件D.以上都不對(duì)
15.
16.設(shè)函數(shù)/(x)=cosx,則
A.1
B.0
C.
D.-1
17.
18.
19.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
20.
A.
B.
C.
D.
二、填空題(20題)21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.=______.
36.
37.
38.
則F(O)=_________.
39.
40.
三、計(jì)算題(20題)41.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
42.
43.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
44.
45.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
46.
47.
48.
49.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
50.求微分方程的通解.
51.證明:
52.求曲線在點(diǎn)(1,3)處的切線方程.
53.
54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
55.
56.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
57.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
58.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
59.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
60.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)61.已知f(x)在[a,b]上連續(xù)且f(a)=f(b),在(a,b)內(nèi)f''(x)存在,連接A(a,f(a)),B(b,f(b))兩點(diǎn)的直線交曲線y=f(x)于C(c,f(c))且a<c<b,試證在(a,b)內(nèi)至少有一點(diǎn)ξ使得f''(ξ)=0.
62.
63.
64.
65.
66.
67.
68.
69.計(jì)算
70.計(jì)算,其中區(qū)域D滿足x2+y2≤1,x≥0,y≥0.
五、高等數(shù)學(xué)(0題)71.x→0時(shí),1一cos2x與
等價(jià),則a=__________。
六、解答題(0題)72.
參考答案
1.D
2.D
3.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無(wú)窮大。
4.B
5.A由于在(α,b)內(nèi)f'(x)<0,可知f(x)單調(diào)減少。由于f"(x)>0,
可知曲線y=f'(x)在(α,b)內(nèi)為凹,因此選A。
6.D
7.C
8.D
9.C由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
10.A解析:談判是指雙方或多方為實(shí)現(xiàn)某種目標(biāo)就有關(guān)條件達(dá)成協(xié)議的過(guò)程。
11.C
12.B
13.D解析:un、vn可能為任意數(shù)值,因此正項(xiàng)級(jí)數(shù)的比較判別法不能成立,可知應(yīng)選D。
14.D本題考查了判斷函數(shù)極限的存在性的知識(shí)點(diǎn).
極限是否存在與函數(shù)在該點(diǎn)有無(wú)定義無(wú)關(guān).
15.C
16.D
17.A
18.C
19.D由拉格朗日定理
20.B本題考查的知識(shí)點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。
21.1.
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的計(jì)算.
22.
23.
24.x-arctanx+C
25.
26.x+2y-z-2=0
27.1/3
28.
29.
本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.
30.
本題考查的知識(shí)點(diǎn)為定積分的換元法.
解法1
解法2
令t=1+x2,則dt=2xdx.
當(dāng)x=1時(shí),t=2;當(dāng)x=2時(shí),t=5.
這里的錯(cuò)誤在于進(jìn)行定積分變量替換,積分區(qū)間沒(méi)做變化.
31.
32.0
33.yxy-1
34.
35.本題考查的知識(shí)點(diǎn)為定積分的換元積分法。設(shè)t=x/2,則x=2t,dx=2dt.當(dāng)x=0時(shí),t=0;當(dāng)x=π時(shí),t=π/2。因此
36.
37.
38.
39.
40.
解析:
41.
42.
43.函數(shù)的定義域?yàn)?/p>
注意
44.
45.
46.由一階線性微分方程通解公式有
47.
48.
49.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
50.
51.
52.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
53.
54.
列表:
說(shuō)明
55.
則
56.
57.由等價(jià)無(wú)窮小量的定義可知
58.由二重積分物理意義知
59.
60.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
61.由題意知f(a)=f(b)=f(c),在(a,c)內(nèi)有一點(diǎn)η1,使得f'(η1)=0,在(c,6)內(nèi)有一點(diǎn)η2,使得f'(η2)=0,這里a<η1<c<b,再由羅爾定理,知在(η1,η2)內(nèi)有一點(diǎn)ξ使得f''(ξ)=0.
62.
63.
64.
65.
66.
6
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025福建省建筑安全員B證(項(xiàng)目經(jīng)理)考試題庫(kù)
- 2025四川建筑安全員-B證考試題庫(kù)附答案
- 2025天津市安全員《A證》考試題庫(kù)及答案
- 《it推動(dòng)商業(yè)變革》課件
- 大匠文化精神課件(增)
- 多項(xiàng)式與多項(xiàng)式相乘的課件
- 【物理課件】測(cè)定金屬的電阻率 練習(xí)使用螺旋測(cè)微器課件
- 江蘇省無(wú)錫市2024-2025學(xué)年高二上學(xué)期期終教學(xué)質(zhì)量調(diào)研測(cè)試歷史試卷(含答案)
- 單位管理制度展示大全【職員管理】十篇
- 單位管理制度收錄大全【員工管理】十篇
- 貴州省遵義市播州區(qū)2023-2024學(xué)年二年級(jí)上學(xué)期數(shù)學(xué)期末質(zhì)量監(jiān)測(cè)試卷
- 2024版智能硬件產(chǎn)品研發(fā)合作協(xié)議3篇
- 國(guó)家電網(wǎng)招聘之財(cái)務(wù)會(huì)計(jì)類(lèi)題庫(kù)含完整答案(必刷)
- 2024年手術(shù)室?guī)Ы坦ぷ饔?jì)劃樣本(5篇)
- 保安服務(wù)招投標(biāo)書(shū)范本(兩篇)2024
- 遼寧省沈陽(yáng)市五校協(xié)作體2024-2025學(xué)年高二上學(xué)期11月期中考試語(yǔ)文試題(含答案)
- 保密知識(shí)培訓(xùn)
- 江西省穩(wěn)派教育2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析
- 2022-2023學(xué)年北京市海淀區(qū)高二(上)期末英語(yǔ)試卷(含答案解析)
- 2021-2022學(xué)年統(tǒng)編本五四制道德與法治五年級(jí)上冊(cè)期末檢測(cè)題及答案(共6套)
- (BRB)屈曲約束支撐施工專(zhuān)項(xiàng)方案
評(píng)論
0/150
提交評(píng)論