![skewnesskurtosis峰度,偏度介紹_第1頁](http://file4.renrendoc.com/view/357a734e47ecf64fd89972a213ee2041/357a734e47ecf64fd89972a213ee20411.gif)
![skewnesskurtosis峰度,偏度介紹_第2頁](http://file4.renrendoc.com/view/357a734e47ecf64fd89972a213ee2041/357a734e47ecf64fd89972a213ee20412.gif)
![skewnesskurtosis峰度,偏度介紹_第3頁](http://file4.renrendoc.com/view/357a734e47ecf64fd89972a213ee2041/357a734e47ecf64fd89972a213ee20413.gif)
![skewnesskurtosis峰度,偏度介紹_第4頁](http://file4.renrendoc.com/view/357a734e47ecf64fd89972a213ee2041/357a734e47ecf64fd89972a213ee20414.gif)
![skewnesskurtosis峰度,偏度介紹_第5頁](http://file4.renrendoc.com/view/357a734e47ecf64fd89972a213ee2041/357a734e47ecf64fd89972a213ee20415.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
Skewness,Kurtosis,andtheNormalCurve?
Skewness
Ineverydaylanguage,theterms“skewed”and“askew”areusedtorefertosomethingthatisoutoflineordistortedononeside.Whenreferringtotheshapeoffrequencyorprobabilitydistributions,“skewness”referstoasymmetryofthedistribution.Adistributionwithanasymmetrictailextendingouttotherightisreferredtoas“positivelyskewed”or“skewedtotheright,”whileadistributionwithanasymmetrictailextendingouttotheleftisreferredtoas“negativelyskewed”or“skewedtotheleft.”Skewnesscanrangefromminusinfinitytopositiveinfinity.
KarlPearson(1895)firstsuggestedmeasuringskewnessbystandardizingthedifferencebetweenthemeanandthemode,thatis,sk=—_mode.Populationmodeso
,_3(M一median)
sk=
est s
arenotwellestimatedfromsamplemodes,butonecanestimatethedifferencebetweenthemeanandthemodeasbeingthreetimesthedifferencebetweenthemeanandthemedian(Stuart&Ord,1994),leadingtothefollowingestimateofskewness:
Manystatisticiansusethismeasurebutwiththe‘3’eliminated,
(M-median)
thatis,sk= .Thisstatisticrangesfrom-1to+1.Absolutevaluesabove
s
0.2indicategreatskewness(Hildebrand,1986).
Skewnesshasalsobeendefinedwithrespecttothethirdmomentaboutthe
mean:y=?(X-~^)3-,whichissimplytheexpectedvalueofthedistributionofcubedz1 no3
scores.Skewnessmeasuredinthiswayissometimesreferredtoas“Fisher’sskewness.”Whenthedeviationsfromthemeanaregreaterinonedirectionthanintheotherdirection,thisstatisticwilldeviatefromzerointhedirectionofthelargerdeviations.Fromsampledata,Fisher’sskewnessismostoftenestimatedby:
Forlargesamplesizes(n>150),g1maybedistributed
nEz3g=
(n-1)(n-2)
approximatelynormally,withastandarderrorofapproximatelyc6/n.Whileonecouldusethissamplingdistributiontoconstructconfidenceintervalsforortestsofhypothesesabouty1,thereisrarelyanyvalueindoingso.
Themostcommonlyusedmeasuresofskewness(thosediscussedhere)mayproducesurprisingresults,suchasanegativevaluewhentheshapeofthedistribution
appearsskewedtotheright.Theremaybesuperioralternativemeasuresnotcommonlyused(Groeneveld&Meeden,1984).
Itisimportantforbehavioralresearcherstonoticeskewnesswhenitappearsintheirdata.Greatskewnessmaymotivatetheresearchertoinvestigateoutliers.Whenmakingdecisionsaboutwhichmeasureoflocationtoreport(meansbeingdrawninthedirectionoftheskew)andwhichinferentialstatistictoemploy(onewhichassumesnormalityoronewhichdoesnot),oneshouldtakeintoconsiderationtheestimatedskewnessofthepopulation.Normaldistributionshavezeroskewness.Ofcourse,adistributioncanbeperfectlysymmetricbutfarfromnormal.Transformationscommonlyemployedtoreduce(positive)skewnessincludesquareroot,log,andreciprocaltransformations.
AlsoseeSkewnessandtheRelativePositionsofMean,Median,andMode
Kurtosis
KarlPearson(1905)definedadistribution’sdegreeofkurtosisas^=P2-3,
E(X一u)4
whereP=— -,theexpectedvalueofthedistributionofZscoreswhichhave
no4
c_ n(n+1)ZZ4 _ 3(n-1)2
g2—(n-1)(n-2)(n-3)-(n-2)(n-3)
beenraisedtothe4thpower.P2isoftenreferredtoas“Pearson’skurtosis,”andP2-3(oftensymbolizedwithy2)as“kurtosisexcess”or“Fisher’skurtosis,”eventhoughitwasPearsonwhodefinedkurtosisasP2-3.Anunbiasedestimatorfory2is
Forlargesamplesizes(n>1000),g2maybe
distributedapproximatelynormally,withastandarderrorofapproximately<24/n(Snedecor,&Cochran,1967).Whileonecouldusethissamplingdistributiontoconstructconfidenceintervalsforortestsofhypothesesabouty2,thereisrarelyanyvalueindoingso.
Pearson(1905)introducedkurtosisasameasureofhowflatthetopofasymmetricdistributioniswhencomparedtoanormaldistributionofthesamevariance.Hereferredtomoreflat-toppeddistributions(y2<0)as“platykurtic,”lessflat-toppeddistributions(y2>0)as“l(fā)eptokurtic,”andequallyflat-toppeddistributionsas“mesokurtic”(y2六0).Kurtosisisactuallymoreinfluencedbyscoresinthetailsofthedistributionthanscoresinthecenterofadistribution(DeCarlo,1967).Accordingly,itisoftenappropriatetodescribealeptokurticdistributionas“fatinthetails”andaplatykurticdistributionas“thininthetails.”
Student(1927,Biometrika,19,160)publishedacutedescriptionofkurtosis,whichIquotehere:“Platykurticcurveshaveshorterftails'thanthenormalcurveoferrorandleptokurticlongerftails.’Imyselfbearinmindthemeaningofthewordsbytheabovememoriatechnica,wherethefirstfigurerepresentsplatypusandthesecondkangaroos,notedforlepping.”Pleasepointyourbrowsertomembers.aol./jeff570/k.html,scrolldownto“kurtosis,”andlookatStudent’sdrawings.
Moors(1986)demonstratedthatp=Var(Z2)+1.Accordingly,itmaybebesttotreatkurtosisastheextenttowhichscoresaredispersedawayfromtheshouldersofadistribution,wheretheshouldersarethepointswhereZ2=1,thatis,Z=±1.BalandaandMacGillivray(1988)wrote“itisbesttodefinekurtosisvaguelyasthelocation-andscale-freemovementofprobabilitymassfromtheshouldersofadistributionintoitscentreandtails.”Ifonestartswithanormaldistributionandmovesscoresfromtheshouldersintothecenterandthetails,keepingvarianceconstant,kurtosisisincreased.Thedistributionwilllikelyappearmorepeakedinthecenterandfatterinthetails,likea
6、Laplacedistribution(y2=3)orStudentstwithfewdegreesoffreedom(y2=-f~4).
Startingagainwithanormaldistribution,movingscoresfromthetailsandthecentertotheshoulderswilldecreasekurtosis.Auniformdistributioncertainlyhasaflattop,withy=-1.2,buty2canreachaminimumvalueof-2whentwoscorevaluesareequallyprobablyandallotherscorevalueshaveprobabilityzero(arectangularUdistribution,thatis,abinomialdistributionwithn=1,p=.5).OnemightobjectthattherectangularUdistributionhasallofitsscoresinthetails,butcloserinspectionwillrevealthatithasnotails,andthatallofitsscoresareinitsshoulders,exactlyonestandarddeviationfromitsmean.Valuesofg2lessthanthatexpectedforanuniformdistribution(-1.2)maysuggestthatthedistributionisbimodal(Darlington,1970),butbimodaldistributionscanhavehighkurtosisifthemodesaredistantfromtheshoulders.
OneleptokurticdistributionweshalldealwithisStudent’stdistribution.Thekurtosisoftisinfinitewhendf<5,6whendf=5,3whendf=6.Kurtosisdecreasesfurther(towardszero)asdfincreaseandtapproachesthenormaldistribution.
Kurtosisisusuallyofinterestonlywhendealingwithapproximatelysymmetricdistributions.Skeweddistributionsarealwaysleptokurtic(Hopkins&Weeks,1990).Amongtheseveralalternativemeasuresofkurtosisthathavebeenproposed(noneofwhichhasoftenbeenemployed),isonewhichadjuststhemeasurementofkurtosistoremovetheeffectofskewness(Blest,2003).
Thereismuchconfusionabouthowkurtosisisrelatedtotheshapeofdistributions.Manyauthorsoftextbookshaveassertedthatkurtosisisameasureofthepeakednessofdistributions,whichisnotstrictlytrue.
Itiseasytoconfuselowkurtosiswithhighvariance,butdistributionswithidenticalkurtosiscandifferinvariance,anddistributionswithidenticalvariancescandifferinkurtosis.Herearesomesimpledistributionsthatmayhelpyouappreciatethatkurtosisis,inpart,ameasureoftailheavinessrelativetothetotalvarianceinthedistribution(rememberthe"0/inthedenominator).
Table1.
Kurtosisfor7SimpleDistributionsAlsoDifferinginVariance
X
freqA
freqB
freqC
freqD
freqE
freqF
freqG
05
20
20
20
10
05
03
01
10
00
10
20
20
20
20
20
15
20
20
20
10
05
03
01
Kurtosis
-2.0
-1.75
-1.5
-1.0
0.0
1.33
8.0
Variance
25
20
16.6
12.5
8.3
5.77
2.27
Platykurtic
Leptokurtic
WhenIpresentedthesedistributionstomycolleaguesandgraduatestudentsandaskedthemtoidentifywhichhadtheleastkurtosisandwhichthemost,allsaidAhasthemostkurtosis,Gtheleast(exceptingthosewhorefusedtoanswer).ButinfactAhastheleastkurtosis(-2isthesmallestpossiblevalueofkurtosis)andGthemost.Thetrickistodoamentalfrequencyplotwheretheabscissaisinstandarddeviationunits.InthemaximallyplatykurticdistributionA,whichinitiallyappearstohaveallitsscoresinitstails,noscoreismorethanoneoawayfromthemean-thatis,ithasnotails!IntheleptokurticdistributionG,whichseemsonlytohaveafewscoresinitstails,onemustrememberthatthosescores(5&15)aremuchfartherawayfromthemean(3.3o)thanarethe5’s&15,sindistributionA.Infact,inGninepercentofthescoresaremorethanthreeofromthemean,muchmorethanyouwouldexpectinamesokurticdistribution(likeanormaldistribution),thusGdoesindeedhavefattails.
IfyouwereyoutoaskSAStocomputekurtosisontheAscoresinTable1,youwouldgetavaluelessthan-2.0,lessthanthelowestpossiblepopulationkurtosis.Why?SASassumesyourdataareasampleandcomputestheg2estimateofpopulationkurtosis,whichcanfallbelow-2.0.
SuneKarlsson,oftheStockholmSchoolofEconomics,hasprovidedmewiththefollowingmodifiedexamplewhichholdsthevarianceapproximatelyconstant,makingitquiteclearthatahigherkurtosisimpliesthattherearemoreextremeobservations(orthattheextremeobservationsaremoreextreme).Itisalsoevidentthatahigherkurtosisalsoimpliesthatthedistributionismorefsingle-peaked)(thiswouldbeevenmoreevidentifthesumofthefrequencieswasconstant).Ihavehighlightedtherowsrepresentingtheshouldersofthedistributionsothatyoucanseethattheincreaseinkurtosisisassociatedwithamovementofscoresawayfromtheshoulders.
Table2.
KurtosisforSevenSimpleDistributionsNotDifferinginVariance
X
Freq.A
Freq.B
Freq.C
Freq.D
Freq.E
Freq.F
Freq.G
-6.6
0
0
0
0
0
0
1
-0.4
0
0
0
0
0
3
0
1.3
0
0
0
0
5
0
0
2.9
0
0
0
10
0
0
0
3.9
0
0
20
0
0
0
0
4.4
0
20
0
0
0
0
0
5
20
0
0
0
0
0
0
10
0
10
20
20
20
20
20
15
20
0
0
0
0
0
0
15.6
0
20
0
0
0
0
0
16.1
0
0
20
0
0
0
0
17.1
0
0
0
10
0
0
0
18.7
0
0
0
0
5
0
0
20.4
0
0
0
0
0
3
0
26.6
0
0
0
0
0
0
1
Kurtosis
-2.0
-1.75
-1.5
-1.0
0.0
1.33
8.0
Variance
25
25.1
24.8
25.2
25.2
25.0
25.1
Whileisunlikelythatabehavioralresearcherwillbeinterestedinquestionsthatfocusonthekurtosisofadistribution,estimatesofkurtosis,incombinationwithotherinformationabouttheshapeofadistribution,canbeuseful.DeCarlo(1997)describedseveralusesfortheg2statistic.Whenconsideringtheshapeofadistributionofscores,itisusefultohaveathandmeasuresofskewnessandkurtosis,aswellasgraphicaldisplays.Thesestatisticscanhelponedecidewhichestimatorsortestsshouldperformbestwithdatadistributedlikethoseonhand.Highkurtosisshouldalerttheresearchertoinvestigateoutliersinoneorbothtailsofthedistribution.
TestsofSignificance
Somestatisticalpackages(includingSPSS)providebothestimatesofskewnessandkurtosisandstandarderrorsforthoseestimates.Onecandividetheestimatebyit’sstandarderrortoobtainaztestofthenullhypothesisthattheparameteriszero(aswouldbeexpectedinanormalpopulation),butIgenerallyfindsuchtestsoflittleuse.Onemaydoan“eyeballtest”onmeasuresofskewnessandkurtosiswhendecidingwhetherornotasampleis“normalenough”touseaninferentialprocedurethatassumesnormalityofthepopulation(s).Ifyouwishtotestthenullhypothesisthatthesamplecamefromanormalpopulation,youcanuseachi-squaregoodnessoffittest,comparingobservedfrequenciesintenorsointervals(fromlowesttohighestscore)withthefrequenciesthatwouldbeexpectedinthoseintervalswerethepopulationnormal.Thistesthasverylowpower,especiallywithsmallsamplesizes,wherethenormalityassumptionmaybemostcritical.Thusyoumaythinkyourdatacloseenoughtonormal(notsignificantlydifferentfromnormal)touseateststatisticwhichassumesnormalitywheninfactthedataaretoodistinctlynon-normaltoemploysuchatest,thenonsignificanceofthedeviationfromnormalityresultingonlyfromlowpower,smallsamplesizes.SAS’PROCUNIVARIATEwilltestsuchanullhypothesisforyouusingthemorepowerfulKolmogorov-Smirnovstatistic(forlargersamples)ortheShapiro-Wilksstatistic(forsmallersamples).Thesehaveveryhighpower,especiallywithlargesamplesizes,inwhichcasethenormalityassumptionmaybelesscriticalfortheteststatisticwhosenormalityassumptionisbeingquestioned.Thesetestsmaytellyouthatyoursampledifferssignificantlyfromnormalevenwhenthedeviationfromnormalityisnotlargeenoughtocauseproblemswiththeteststatisticwhichassumesnormality.
SASExercises
GotomyStatDatapageanddownloadthefileEDA.dat.GotomySAS-Programspageanddownloadtheprogramfileg1g2.sas.EdittheprogramsothattheINFILEstatementpointscorrectlytothefolderwhereyoulocatedEDA.datandthenruntheprogram,whichillustratesthecomputationofg1andg2.Lookattheprogram.TherawdataarereadfromEDA.datandPROCMEANSisthenusedtocomputeg1andg2.ThenextportionoftheprogramusesPROCSTANDARDtoconvertthedatatozscores.PROCMEANSisthenusedtocomputeg1andg2onthezscores.Notethatstandardizationofthescoreshasnotchangedthevaluesofg1andg2.Thenextportionoftheprogramcreatesadatasetwiththezscoresraisedtothe3rdandthe4thpowers.Thefinalstepoftheprogramusesthesepowersofztocomputeg1andg2usingtheformulaspresentedearlierinthishandout.Notethatthevaluesofg1andg2arethesameasobtainedearlierfromPROCMEANS.
GotomySAS-ProgramspageanddownloadandrunthefileKurtosis-Uniform.sas.Lookattheprogram.ADOloopandtheUNIFORMfunctionareusedtocreateasampleof500,000scoresdrawnfromauniformpopulationwhichrangesfrom0to1.PROCMEANSthencomputesmean,standarddeviation,skewness,andkurtosis.Lookattheoutput.Comparetheobtainedstatisticstotheexpectedvaluesforthefollowingparametersofauniformdistributionthatrangesfromatob:
Parameter
ExpectedValue
Parameter
ExpectedValue
Mean
a+b
2
Skewness
0
StandardDeviation
.,(b-a)2
12
Kurtosis
-1.2
GotomySAS-Programspageanddownloadandrunthefile“Kurtosis-T.sas,”whichdemonstratestheeffectofsamplesize(degreesoffreedom)onthekurtosisofthetdistribution.Lookattheprogram.WithineachsectionoftheprogramaDOloopisusedtocreate500,000samplesofNscores(whereNis10,11,17,or29),eachdrawnfromanormalpopulationwithmean0andstandarddeviation1.PROCMEANSisthenusedtocomputeStudent’stforeachsample,outputtingthesetscoresintoanewdataset.Weshalltreatthisnewdatasetasthesamplingdistributionoft.PROCMEANSisthenusedtocomputethemean,standarddeviation,andkurtosisofthesamplingdistributionsoft.Foreachvalueofdegreesoffreedom,comparetheobtainedstatisticswiththeirexpectedvalues.
Mean
StandardDeviation
Kurtosis
0
:df
6
\df-2
df-4
DownloadandrunmyprogramKurtosis_Beta2.sas.Lookattheprogram.EachsectionoftheprogramcreatesoneofthedistributionsfromTable1aboveandthenconvertsthedatatozscores,raisesthezscorestothefourthpower,andcomputesP2asthemeanofz4.Subtract3fromeachvalueofP2andthencomparetheresultingy2tothevaluegiveninTable1.
DownloadandrunmyprogramKurtosis-Normal.sas.Lookattheprogram.DOloopsandtheNORMALfunctionareusedtocreate10,000samples,eachwith1,000scoresdrawnfromanormalpopulationwithmean0andstandarddeviation1.PROCMEANScreatesanewdatasetwiththeg1andtheg2statisticsforeachsample.PROCMEANSthencomputesthemeanandstandarddeviation(standarderror)forskewnessandkurtosis.Comparethevaluesobtainedwiththoseexpected,0forthemeans,and<6/nand<24/nforthestandarderrors.
References
Balanda&MacGillivray.(1988).Kurtosis:Acriticalreview.AmericanStatistician,42:111-119.
Blest,D.C.(2003).Anewmeasureofkurtosisadjustedforskewness.Australian&NewZealandJournalofStatistics,45,175-179.
Darlington,R.B.(1970).Iskurtosisreally“peakeTheAmericanStatistician,24(2),1922.
DeCarlo,L.T.(1997).Onthemeaninganduseofkurtosis.P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【部編版】七年級歷史上冊《秦統(tǒng)一中國》公開課 聽課評課記錄
- 人教版九年級數(shù)學(xué)上冊21.3.1《一元二次方程的根與系數(shù)的關(guān)系》聽評課記錄
- 2025年便攜式X?zé)晒夤庾V分析儀合作協(xié)議書
- 七年級第二學(xué)期工作總結(jié)
- 蘇科版數(shù)學(xué)七年級下冊8.1.1《同底數(shù)冪的乘法》聽評課記錄
- 公司職工食堂承包協(xié)議書范本
- 裝飾裝修勞務(wù)分包合同范本
- 2025年度新能源電站租賃誠意金合同
- 2025年度裝修施工現(xiàn)場安全監(jiān)督合同
- 二零二五年度航空航天設(shè)備采購合同知識產(chǎn)權(quán)保護及實施約定
- 寒假開學(xué)收心主題班會課件
- 完全版的公司治理規(guī)章制度
- 中醫(yī)護理查房制度
- 臨床研究方法的進展與挑戰(zhàn)
- 數(shù)據(jù)采集自動化流程
- 家庭園藝資材蘊藏商機
- 幼兒園食品營養(yǎng)搭配與食品安全培訓(xùn)
- 母嬰護理員題庫
- 當(dāng)幸福來敲門電影介紹PPT模板
- 英國早期預(yù)警評分(NEWS評分)
- 老年人預(yù)防及控制養(yǎng)老機構(gòu)院內(nèi)感染院內(nèi)感染基本知識
評論
0/150
提交評論