![2024學(xué)年浙江省杭州市杭州二中數(shù)學(xué)高二上期末聯(lián)考試題含解析_第1頁](http://file4.renrendoc.com/view/855c8a363ca96ad454aeb1338988001a/855c8a363ca96ad454aeb1338988001a1.gif)
![2024學(xué)年浙江省杭州市杭州二中數(shù)學(xué)高二上期末聯(lián)考試題含解析_第2頁](http://file4.renrendoc.com/view/855c8a363ca96ad454aeb1338988001a/855c8a363ca96ad454aeb1338988001a2.gif)
![2024學(xué)年浙江省杭州市杭州二中數(shù)學(xué)高二上期末聯(lián)考試題含解析_第3頁](http://file4.renrendoc.com/view/855c8a363ca96ad454aeb1338988001a/855c8a363ca96ad454aeb1338988001a3.gif)
![2024學(xué)年浙江省杭州市杭州二中數(shù)學(xué)高二上期末聯(lián)考試題含解析_第4頁](http://file4.renrendoc.com/view/855c8a363ca96ad454aeb1338988001a/855c8a363ca96ad454aeb1338988001a4.gif)
![2024學(xué)年浙江省杭州市杭州二中數(shù)學(xué)高二上期末聯(lián)考試題含解析_第5頁](http://file4.renrendoc.com/view/855c8a363ca96ad454aeb1338988001a/855c8a363ca96ad454aeb1338988001a5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024學(xué)年浙江省杭州市杭州二中數(shù)學(xué)高二上期末聯(lián)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列中,,,則該數(shù)列的公比為()A. B.C. D.2.的三個內(nèi)角A,B,C所對的邊分別為a,b,c,若,則()A. B.C. D.3.已知,則的最小值是()A.3 B.8C.12 D.204.已知等比數(shù)列的首項為1,公比為2,則=()A. B.C. D.5.已知直線,若直線與垂直,則的傾斜角為()A. B.C. D.6.已知函數(shù)只有一個零點(diǎn),則實數(shù)的取值范圍是()A B.C. D.7.如圖,樣本和分別取自兩個不同的總體,它們的平均數(shù)分別為和,標(biāo)準(zhǔn)差分別為和,則()AB.C.D.8.若函數(shù)在上為單調(diào)減函數(shù),則的取值范圍()A. B.C. D.9.橢圓以坐標(biāo)軸為對稱軸,經(jīng)過點(diǎn),且長軸長是短軸長的倍,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C.或 D.或10.(2017新課標(biāo)全國Ⅲ理科)已知圓柱的高為1,它的兩個底面的圓周在直徑為2的同一個球的球面上,則該圓柱的體積為A. B.C. D.11.甲,乙、丙、丁、戊共5人隨機(jī)地排成一行,則甲、乙相鄰,丙、丁不相鄰的概率為()A. B.C. D.12.如圖,在三棱錐中,兩兩垂直,且,點(diǎn)E為中點(diǎn),若直線與所成的角為,則三棱錐的體積等于()A. B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.1202年意大利數(shù)學(xué)家列昂那多-斐波那契以兔子繁殖為例,引人“兔子數(shù)列”,又稱斐波那契數(shù)列.即該數(shù)列中的數(shù)字被人們稱為神奇數(shù),在現(xiàn)代物理,化學(xué)等領(lǐng)域都有著廣泛的應(yīng)用.若此數(shù)列各項被3除后的余數(shù)構(gòu)成一新數(shù)列,則數(shù)列的前2022項的和為________.14.已知點(diǎn)P是雙曲線右支上的一點(diǎn),且以點(diǎn)P及焦點(diǎn)為定點(diǎn)的三角形的面積為4,則點(diǎn)P的坐標(biāo)是_____________15.已知圓,圓,則兩圓的公切線條數(shù)是___________.16.若直線與平行,則實數(shù)________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在棱長為3的正方體中,分別是上的點(diǎn)且(1)求證:;(2)求平面與平面的夾角的余弦值18.(12分)已知雙曲線(1)若,求雙曲線的焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)和漸近線方程;(2)若雙曲線的離心率為,求實數(shù)的取值范圍19.(12分)已知,C是圓B:(B是圓心)上一動點(diǎn),線段AC的垂直平分線交BC于點(diǎn)P(1)求動點(diǎn)P的軌跡的方程;(2)設(shè)E,F(xiàn)為與x軸的兩交點(diǎn),Q是直線上動點(diǎn),直線QE,QF分別交于M,N兩點(diǎn),求證:直線MN過定點(diǎn)20.(12分)在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的左、右焦點(diǎn)分別為,其離心率,且橢圓C經(jīng)過點(diǎn).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點(diǎn)M作兩條不同的直線與橢圓C分別交于點(diǎn)A,B(均異于點(diǎn)M).若∠AMB的角平分線與y軸平行,試探究直線AB的斜率是否為定值?若是,請給予證明;若不是,請說明理由.21.(12分)已知拋物線C:焦點(diǎn)F的橫坐標(biāo)等于橢圓的離心率.(1)求拋物線C的方程;(2)過(1,0)作直線l交拋物線C于A,B兩點(diǎn),判斷原點(diǎn)與以線段AB為直徑的圓的位置關(guān)系,并說明理由.22.(10分)某工廠修建一個長方體無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設(shè)池底長方形長為x米(1)求底面積,并用含x的表達(dá)式表示池壁面積;(2)怎樣設(shè)計水池能使總造價最低?最低造價是多少?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】設(shè)等比數(shù)列的公比為,可得出,即可得解.【題目詳解】設(shè)等比數(shù)列的公比為,可得出.故選:C.2、D【解題分析】利用正弦定理邊化角,角化邊計算即可.【題目詳解】由正弦定理邊化角得,,再由正弦定理角化邊得,即故選:D.3、A【解題分析】利用基本不等式進(jìn)行求解即可.【題目詳解】因為,所以,當(dāng)且僅當(dāng)時取等號,即當(dāng)時取等號,故選:A4、D【解題分析】數(shù)列是首項為1,公比為4的等比數(shù)列,然后可算出答案.【題目詳解】因為等比數(shù)列的首項為1,公比為2,所以數(shù)列是首項為1,公比為4的等比數(shù)列所以故選:D5、D【解題分析】由直線與垂直得到的斜率,再利用斜率與傾斜角的關(guān)系即可得到答案.【題目詳解】因為直線與垂直,且,所以,解得,設(shè)的傾斜角為,,所以.故選:D6、B【解題分析】將題目轉(zhuǎn)化為函數(shù)的圖像與的圖像只有一個交點(diǎn),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,作出圖像,利用數(shù)形結(jié)合求出的取值范圍.【題目詳解】由函數(shù)只有一個零點(diǎn),等價于函數(shù)的圖像與的圖像只有一個交點(diǎn),,求導(dǎo),令,得當(dāng)時,,函數(shù)在上單調(diào)遞減;當(dāng)時,,函數(shù)在上單調(diào)遞增;當(dāng)時,,函數(shù)在上單調(diào)遞減;故當(dāng)時,函數(shù)取得極小值;當(dāng)時,函數(shù)取得極大值;作出函數(shù)圖像,如圖所示,由圖可知,實數(shù)的取值范圍是故選:B【題目點(diǎn)撥】方法點(diǎn)睛:已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進(jìn)而構(gòu)造兩個函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.7、B【解題分析】直接根據(jù)圖表得到答案.【題目詳解】根據(jù)圖表:樣本數(shù)據(jù)均小于等于10,樣本數(shù)據(jù)均大于等于10,故;樣本數(shù)據(jù)波動大于樣本數(shù)據(jù),故.故選:B.8、A【解題分析】分析可知對任意的恒成立,利用參變量分離法結(jié)合二次函數(shù)的基本性質(zhì)可求得實數(shù)的取值范圍.【題目詳解】因為,則,由題意可知,對任意的恒成立,則,當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞減,所以,,故.故選:A.9、C【解題分析】分情況討論焦點(diǎn)所在位置及橢圓方程.【題目詳解】當(dāng)橢圓的焦點(diǎn)在軸上時,由題意過點(diǎn),故,,橢圓方程為,當(dāng)橢圓焦點(diǎn)在軸上時,,,橢圓方程為,故選:C.10、B【解題分析】繪制圓柱的軸截面如圖所示,由題意可得:,結(jié)合勾股定理,底面半徑,由圓柱的體積公式,可得圓柱的體積是,故選B.【名師點(diǎn)睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(diǎn)(一般為接、切點(diǎn))或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.11、A【解題分析】先求出所有的基本事件,再求出甲、乙相鄰,丙、丁不相鄰的基本事件,根據(jù)古典概型的概率公式求解即可【題目詳解】甲,乙、丙、丁、戊共5人隨機(jī)地排成一行有種方法,甲、乙相鄰,丙、丁不相鄰的排法為先將甲、乙捆綁在一起,再與戊進(jìn)行排列,然后丙、丁從3個空中選2個空插入,則共有種方法,所以甲、乙相鄰,丙、丁不相鄰的概率為,故選:A12、D【解題分析】由題意可證平面,取BD的中點(diǎn)F,連接EF,則為直線與所成的角,利用余弦定理求出,根據(jù)三棱錐體積公式即可求得體積【題目詳解】如圖,∵,點(diǎn)為的中點(diǎn),∴,,∵,,兩兩垂直,,∴平面,取BD的中點(diǎn)F,連接EF,∴為直線與所成的角,且,由題意可知,,設(shè),連接AF,則,在中,由余弦定理,得,即,解得,即∴三棱錐的體積故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】由數(shù)列各項除以3的余數(shù),可得為,知是周期為8的數(shù)列,即可求出數(shù)列的前2022項的和.【題目詳解】由數(shù)列各項除以3的余數(shù),可得為,是周期為8的數(shù)列,一個周期中八項和為,又,數(shù)列的前2022項的和.故答案為:.14、【解題分析】由題可得P到x軸的距離為1,把代入,得,可得P點(diǎn)坐標(biāo)【題目詳解】設(shè),由題意知,所以,則,由題意可得,把代入,得,所以P點(diǎn)坐標(biāo)為故答案為:15、【解題分析】首先把圓的一般方程化為標(biāo)準(zhǔn)方程,進(jìn)一步求出兩圓的位置關(guān)系,可得兩圓的公切線條數(shù).【題目詳解】解:由圓,可得:,可得其圓心為,半徑為;由,可得,可得其圓心為,半徑為2;所以可得其圓心距為:,可得:,故兩圓相交,其公切線條數(shù)為,故答案為:2.【題目點(diǎn)撥】本題主要考查兩圓的位置關(guān)系及兩圓公切線條數(shù)的判斷,屬于中檔題.16、【解題分析】根據(jù)兩直線平行可得出關(guān)于實數(shù)的等式與不等式,即可解得實數(shù)的值.【題目詳解】因為,則,解得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解題分析】(1)建立空間直角坐標(biāo)系后得到相關(guān)向量,再運(yùn)用數(shù)量積證明;(2)求出相關(guān)平面的法向量,再運(yùn)用夾角公式計算即可.【小問1詳解】建立如下圖所示的空間直角坐標(biāo)系:,,,,,∴,故.【小問2詳解】,,,設(shè)平面的一個法向量為,由,令,則,取平面的一個法向量為,設(shè)平面與平面夾角為,易知:為銳角,故,即平面與平面夾角的余弦值為.18、(1)焦點(diǎn)坐標(biāo)為,,頂點(diǎn)坐標(biāo)為,,漸近線方程為;(2).【解題分析】(1)根據(jù)雙曲線方程確定,即可按照概念對應(yīng)寫出焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)和漸近線方程;(2)先求(用表示),再根據(jù)解不等式得結(jié)果.【題目詳解】(1)當(dāng)時,雙曲線方程化為,所以,,,所以焦點(diǎn)坐標(biāo)為,,頂點(diǎn)坐標(biāo)為,,漸近線方程為.(2)因為,所以,解得,所以實數(shù)的取值范圍是【題目點(diǎn)撥】本題根據(jù)雙曲線方程求焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)和漸近線方程,根據(jù)離心率求參數(shù)范圍,考查基本分析求解能力,屬基礎(chǔ)題.19、(1)(2)證明見解析【解題分析】(1)根據(jù),利用橢圓的定義求解;(2)(解法1)設(shè),得到,的方程,與橢圓方程聯(lián)立,求得M,N的坐標(biāo),寫出直線的方程求解;(解法2)上同解法1,由對稱性分析知動直線MN所過定點(diǎn)一定在x軸上,設(shè)所求定點(diǎn)為,由C,D,T三點(diǎn)共線,然后由求解;(解法3)設(shè),由,,設(shè):,:,其中,與橢圓方程聯(lián)立,整理得,由F,M,N三點(diǎn)的橫坐標(biāo)為該方程的三個根,得到:求解.【小問1詳解】解:由題知,則,由橢圓的定義知動點(diǎn)P的軌跡為以A,B為焦點(diǎn),6為長軸長的橢圓,所以軌跡的方程為【小問2詳解】(解法1)易知E,F(xiàn)為橢圓的長軸兩端點(diǎn),不妨設(shè),,設(shè),則,,于是:,:,聯(lián)立得,解得或,易得,同理當(dāng),即時,:;當(dāng)時,有,于是:,即綜上直線MN過定點(diǎn)(解法2)上同解法1,得,,由對稱性分析知動直線MN所過定點(diǎn)一定在x軸上,設(shè)所求定點(diǎn)為,由C,D,T三點(diǎn)共線,得,即,于是,整理得,由t的任意性知,即,所以直線MN過定點(diǎn)(解法3)設(shè),則,,當(dāng)時,直線MN即為x軸;當(dāng)時,因為,所以,則,設(shè):,:,其中,聯(lián)立,得,整理得,易知F,M,N三點(diǎn)的橫坐標(biāo)為該方程的三個根,所以:,由及的任意性,知直線MN過定點(diǎn)20、(1)(2)是,證明見解析【解題分析】(1)根據(jù)離心率及橢圓上的點(diǎn)可求解;(2)根據(jù)題意分別設(shè)出直線MA、MB,與橢圓聯(lián)立后得到相關(guān)點(diǎn)的坐標(biāo),再通過斜率公式計算即可證明.【小問1詳解】由,得,所以a2=9b2①,又橢圓過點(diǎn),則②,由①②解得a=6,b=2,所以橢圓的標(biāo)準(zhǔn)方程為【小問2詳解】設(shè)直線MA的斜率為k,點(diǎn),因為∠AMB的平分線與y軸平行,所以直線MA與MB的斜率互為相反數(shù),則直線MB的斜率為-k.聯(lián)立直線MA與橢圓方程,得整理,得,所以,同理可得,所以,又所以為定值.21、(1);(2)原點(diǎn)在以線段AB為直徑的圓上,詳見解析.【解題分析】(1)利用橢圓方程可得其離心率,進(jìn)而可求拋物線的焦點(diǎn),即求;(2)設(shè)直線l的方程為,聯(lián)立拋物線方程,利用韋達(dá)定理法可得,即得.【小問1詳解】由橢圓,可得,故,∴拋物線C的方程為.【小問2詳解】由題可設(shè)直線l的方程為,由,得,設(shè),則,又,故,∴,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年海洋潛標(biāo)系統(tǒng)合作協(xié)議書
- 2024-2025學(xué)年海南省定安縣四年級(上)期末數(shù)學(xué)試卷
- 2022年國家開放大學(xué)電大《心理學(xué)》過關(guān)練習(xí)試題A卷-含答案
- 建筑地基處理技術(shù)規(guī)范考試試題及答案
- 2025年人教版四年級數(shù)學(xué)下冊教學(xué)工作總結(jié)(四篇)
- 2025年二年級語文組工作總結(jié)范文(二篇)
- 2025年中央空調(diào)安裝工程承包合同(2篇)
- 2025年二年級下學(xué)期班主任工作計劃總結(jié)(2篇)
- 2025年二年級語文教師教學(xué)總結(jié)(三篇)
- 2025年二手房屋裝修合同(五篇)
- 丙烯-危險化學(xué)品安全周知卡
- 粉條加工廠建設(shè)項目可行性研究報告
- 《配電網(wǎng)設(shè)施可靠性評價指標(biāo)導(dǎo)則》
- 2024年國家電網(wǎng)招聘之通信類題庫附參考答案(考試直接用)
- CJJ 169-2012城鎮(zhèn)道路路面設(shè)計規(guī)范
- 食品企業(yè)日管控周排查月調(diào)度記錄及其報告格式參考
- 產(chǎn)品質(zhì)量法解讀課件1
- 第八單元金屬和金屬材料單元復(fù)習(xí)題-2023-2024學(xué)年九年級化學(xué)人教版下冊
- 倉庫搬遷及改進(jìn)方案課件
- 精神科護(hù)理技能5.3出走行為的防范與護(hù)理
- 采購管理學(xué)教學(xué)課件
評論
0/150
提交評論