2024學(xué)年清華大學(xué)附中數(shù)學(xué)高二上期末監(jiān)測(cè)模擬試題含解析_第1頁(yè)
2024學(xué)年清華大學(xué)附中數(shù)學(xué)高二上期末監(jiān)測(cè)模擬試題含解析_第2頁(yè)
2024學(xué)年清華大學(xué)附中數(shù)學(xué)高二上期末監(jiān)測(cè)模擬試題含解析_第3頁(yè)
2024學(xué)年清華大學(xué)附中數(shù)學(xué)高二上期末監(jiān)測(cè)模擬試題含解析_第4頁(yè)
2024學(xué)年清華大學(xué)附中數(shù)學(xué)高二上期末監(jiān)測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024學(xué)年清華大學(xué)附中數(shù)學(xué)高二上期末監(jiān)測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知正方體的棱長(zhǎng)為1,且滿足,則的最小值是()A. B.C. D.2.已知點(diǎn),在雙曲線上,線段的中點(diǎn),則()A. B.C. D.3.已知?jiǎng)狱c(diǎn)滿足,則動(dòng)點(diǎn)的軌跡是()A.橢圓 B.直線C.線段 D.圓4.阿基米德(公元前287年~公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓C的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在y軸上,且橢圓C的離心率為,面積為6π,則橢圓C的標(biāo)準(zhǔn)方程為()A. B.C. D.5.已知F1(-5,0),F(xiàn)2(5,0),動(dòng)點(diǎn)P滿足|PF1|-|PF2|=2a,當(dāng)a為3和5時(shí),點(diǎn)P的軌跡分別為()A.雙曲線和一條直線 B.雙曲線和一條射線C.雙曲線的一支和一條直線 D.雙曲線的一支和一條射線6.“楊輝三角”是中國(guó)古代重要的數(shù)學(xué)成就,它比西方的“帕斯卡三角形”早了多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù),,,,…構(gòu)成的數(shù)列的第項(xiàng),則的值為()A. B.C. D.7.已知函數(shù)在處取得極小值,則()A. B.C. D.8.已知空間向量,則()A. B.C. D.9.已知直線,兩個(gè)不同的平面,,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則10.已知雙曲線C:的漸近線方程是,則m=()A.3 B.6C.9 D.11.在正方體中,分別是線段的中點(diǎn),則點(diǎn)到直線的距離是()A. B.C. D.12.已知是虛數(shù)單位,若,則復(fù)數(shù)z的虛部為()A.3 B.-3iC.-3 D.3i二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在處的切線方程是_________14.圓與x軸相切于點(diǎn)A.點(diǎn)B在圓C上運(yùn)動(dòng),則AB的中點(diǎn)M的軌跡方程為______(當(dāng)點(diǎn)B運(yùn)動(dòng)到與A重合時(shí),規(guī)定點(diǎn)M與點(diǎn)A重合);點(diǎn)N是直線上一點(diǎn),則的最小值為______15.命題“任意,”為真命題,則實(shí)數(shù)a的取值范圍是______.16.已知函數(shù)在點(diǎn)處的切線為直線l,則l與坐標(biāo)軸圍成的三角形面積為___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)、的距離之和等于,設(shè)點(diǎn)的軌跡為,直線與交于、兩點(diǎn)(1)求曲線的方程;(2)若,求的值18.(12分)已知某中學(xué)高二物化生組合學(xué)生的數(shù)學(xué)與物理的水平測(cè)試成績(jī)抽樣統(tǒng)計(jì)如下表:若抽取了名學(xué)生,成績(jī)分為A(優(yōu)秀),B(良好),C(及格)三個(gè)等級(jí),設(shè),分別表示數(shù)學(xué)成績(jī)與物理成績(jī),例如:表中物理成績(jī)?yōu)锳等級(jí)的共有(人),數(shù)學(xué)成績(jī)?yōu)锽等級(jí)且物理成績(jī)?yōu)镃等級(jí)的共有8人,已知與均為A等級(jí)的概率是0.07(1)設(shè)在該樣本中,數(shù)學(xué)成績(jī)的優(yōu)秀率是30%,求,的值;(2)已知,,求數(shù)學(xué)成績(jī)?yōu)锳等級(jí)的人數(shù)比C等級(jí)的人數(shù)多的概率19.(12分)已知公比的等比數(shù)列和等差數(shù)列滿足:,,其中,且是和的等比中項(xiàng)(1)求數(shù)列與的通項(xiàng)公式;(2)記數(shù)列的前項(xiàng)和為,若當(dāng)時(shí),等式恒成立,求實(shí)數(shù)的取值范圍20.(12分)已知命題;命題.(1)若p是q的充分條件,求m的取值范圍;(2)當(dāng)時(shí),已知是假命題,是真命題,求x的取值范圍.21.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,,.(1)求點(diǎn)B到平面PCD的距離;(2)求二面角的平面角的余弦值.22.(10分)如圖,已知矩形ABCD所在平面外一點(diǎn)P,平面ABCD,E、F分別是AB、PC的中點(diǎn)求證:(1)共面;(2)求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】由空間向量共面定理可得點(diǎn)四點(diǎn)共面,從而將求的最小值轉(zhuǎn)化為求點(diǎn)到平面的距離,再根據(jù)等體積法計(jì)算.【題目詳解】因?yàn)?,由空間向量的共面定理可知,點(diǎn)四點(diǎn)共面,即點(diǎn)在平面上,所以的最小值為點(diǎn)到平面的距離,由正方體棱長(zhǎng)為,可得是邊長(zhǎng)為的等邊三角形,則,,由等體積法得,,所以,所以的最小值為.故選:C【題目點(diǎn)撥】共面定理的應(yīng)用:設(shè)是不共面的四點(diǎn),則對(duì)空間任意一點(diǎn),都存在唯一的有序?qū)崝?shù)組使得,說(shuō)明:若,則四點(diǎn)共面.2、D【解題分析】先根據(jù)中點(diǎn)弦定理求出直線的斜率,然后求出直線的方程,聯(lián)立后利用弦長(zhǎng)公式求解的長(zhǎng).【題目詳解】設(shè),,則可得方程組:,兩式相減得:,即,其中因?yàn)榈闹悬c(diǎn)為,故,故,即直線的斜率為,故直線的方程為:,聯(lián)立,解得:,由韋達(dá)定理得:,,則故選:D3、C【解題分析】根據(jù)兩點(diǎn)之間的距離公式的幾何意義即可判定出動(dòng)點(diǎn)軌跡.【題目詳解】由題意可知表示動(dòng)點(diǎn)到點(diǎn)和點(diǎn)的距離之和等于,又因?yàn)辄c(diǎn)和點(diǎn)的距離等于,所以動(dòng)點(diǎn)的軌跡為線段.故選:4、D【解題分析】設(shè)橢圓的方程為,根據(jù)題意得到和,求得的值,即可求解.【題目詳解】由題意,橢圓的焦點(diǎn)在軸上,可設(shè)橢圓的方程為,因?yàn)闄E圓C的離心率為,可得,又由,即,解得,又因?yàn)闄E圓的面積為,可得,即,聯(lián)立方程組,解答,所以橢圓方程為.故選:D.5、D【解題分析】由雙曲線定義結(jié)合參數(shù)a的取值分類討論而得.【題目詳解】依題意得,當(dāng)時(shí),,且,點(diǎn)P的軌跡為雙曲線的右支;當(dāng)時(shí),,故點(diǎn)P的軌跡為一條射線.故選D.故選:D6、B【解題分析】根據(jù)楊輝三角可得數(shù)列的遞推公式,結(jié)合累加法可得數(shù)列的通項(xiàng)公式與.【題目詳解】由已知可得數(shù)列的遞推公式為,且,且,故,,,,,等式左右兩邊分別相加得,,故選:B.7、A【解題分析】由導(dǎo)數(shù)與極值與最值的關(guān)系,列式求實(shí)數(shù)的值.【題目詳解】由條件可知,,,解得:,,檢驗(yàn),時(shí),當(dāng),得或,函數(shù)的單調(diào)遞增區(qū)間是和,當(dāng),得,所以函數(shù)的單調(diào)遞減區(qū)間是,所以當(dāng)時(shí),函數(shù)取得極小值,滿足條件.所以.故選:A8、C【解題分析】A利用向量模長(zhǎng)的坐標(biāo)表示判斷;B根據(jù)向量平行的判定,是否存在實(shí)數(shù)使即可判斷;C向量數(shù)量積的坐標(biāo)表示求即可判斷;D利用向量坐標(biāo)的線性運(yùn)算及數(shù)量積的坐標(biāo)表示求即可.【題目詳解】因?yàn)?,所以A不正確:因?yàn)椴淮嬖趯?shí)數(shù)使,所以B不正確;因?yàn)椋?,所以C正確;因?yàn)?,所以,所以D不正確故選:C9、C【解題分析】對(duì)于A,可能在內(nèi),故可判斷A;對(duì)于B,可能相交,故可判斷B;對(duì)于C,根據(jù)線面垂直的判定定理,可判定C;對(duì)于D,和可能平行,或斜交或在內(nèi),故可判斷D.【題目詳解】對(duì)于A,除了外,還有可能在內(nèi),故可判斷A錯(cuò)誤;對(duì)于B,,那么可能相交,故可判斷B錯(cuò)誤;對(duì)于C,根據(jù)線面平行的性質(zhì)定理可知,在內(nèi)一定存在和平行的直線,那么該直線也垂直于,所以,故判定C正確;對(duì)于D,,,則和可能平行,或斜交或在內(nèi),故可判D.錯(cuò)誤,故選:C.10、C【解題分析】根據(jù)雙曲線的漸近線求得的值.【題目詳解】依題意可知,雙曲線的漸近線為,所以.故選:C11、A【解題分析】以為坐標(biāo)原點(diǎn),分別以的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系,然后,列出計(jì)算公式進(jìn)行求解即可【題目詳解】如圖,以為坐標(biāo)原點(diǎn),分別以的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系.因?yàn)?,所以,所以,則點(diǎn)到直線的距離故選:A12、C【解題分析】由復(fù)數(shù)的除法運(yùn)算可得答案.【題目詳解】由題得,所以復(fù)數(shù)z的虛部為-3.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】求得,利用導(dǎo)數(shù)的幾何意義,結(jié)合直線的點(diǎn)斜式方程,即可求得結(jié)果.【題目詳解】因?yàn)椋瑒t,,,故在處的切線方程是,整理得:.故答案為:.14、①.②.【解題分析】將點(diǎn)M的軌跡轉(zhuǎn)化為以AC為直徑的圓,再確定圓心及半徑即可求解,將的最小值轉(zhuǎn)化為點(diǎn)到圓心的距離再減去半徑可求解.【題目詳解】依題意得,,因?yàn)镸為AB中點(diǎn),所以,所以點(diǎn)M的軌跡是以AC為直徑的圓,又AC中點(diǎn)為,,所以點(diǎn)M的軌跡方程為,圓心,設(shè)關(guān)于直線的對(duì)稱點(diǎn)為,則有,解得,所以,所以由對(duì)稱性可知的最小值為故答案為:,15、【解題分析】分離常數(shù),將問(wèn)題轉(zhuǎn)化求函數(shù)最值問(wèn)題.【題目詳解】任意,恒成立恒成立,故只需,記,,易知,所以.故答案為:16、【解題分析】先求出切線方程,分別得到直線與x、y軸交點(diǎn),即可求出三角形的面積.【題目詳解】由函數(shù)可得:函數(shù),所以,.所以切線l:,即.令,得到;令,得到;所以l與坐標(biāo)軸圍成的三角形面積為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解題分析】(1)本題可根據(jù)橢圓的定義求出點(diǎn)的軌跡;(2)本題首先可設(shè)、,然后聯(lián)立橢圓與直線方程,通過(guò)韋達(dá)定理得出、,最后通過(guò)得出,代入、的值并計(jì)算,即可得出結(jié)果.【題目詳解】(1)因?yàn)辄c(diǎn)到兩點(diǎn)、的距離之和等于,所以結(jié)合橢圓定義易知,點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn)且的橢圓,則,,,點(diǎn)的軌跡.(2)設(shè),,聯(lián)立,整理得,則,,因?yàn)椋?,即,整理得,則,整理得,解得.【題目點(diǎn)撥】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查根據(jù)橢圓定義求動(dòng)點(diǎn)軌跡以及直線與拋物線相關(guān)問(wèn)題的求解,橢圓的定義為動(dòng)點(diǎn)到兩個(gè)定點(diǎn)的距離為一個(gè)固定的常數(shù),考查韋達(dá)定理的應(yīng)用,考查計(jì)算能力,是難題.18、(1),(2)【解題分析】(1)根據(jù)與均為A等級(jí)的概率是0.07,求得值,再根據(jù)數(shù)學(xué)成績(jī)的優(yōu)秀率是30%求得值,最后利用抽取的總?cè)藬?shù)求出值即可;(2)根據(jù),,,寫出滿足條件得基本事件,找出其中的基本事件,利用古典概型的公式求出概率即可.【小問(wèn)1詳解】由題意知,解得,,解得,由已知得,解得.【小問(wèn)2詳解】由,,,可知,則試驗(yàn)的樣本空間,共9個(gè)樣本點(diǎn)其中包含的樣本點(diǎn)有共4個(gè),故所求概率19、(1),;(2).【解題分析】(1)根據(jù)已知條件可得出關(guān)于方程,解出的值,可求得的值,即可得出數(shù)列與的通項(xiàng)公式;(2)求得,利用錯(cuò)位相減法可求得,分析可知數(shù)列為單調(diào)遞增數(shù)列,對(duì)分奇數(shù)和偶數(shù)兩種情況討論,結(jié)合參變量分離法可得出實(shí)數(shù)的取值范圍.【題目詳解】(1)設(shè)等差數(shù)列的公差為,因?yàn)椋?,,且是和的等比中?xiàng),所以,整理可得,解得或.若,則,可得,不合乎題意;若,則,可得,合乎題意.所以,;;(2)因?yàn)?,①,②②①得因?yàn)?,即?duì)恒成立,所以當(dāng)且,,故數(shù)列為單調(diào)遞增數(shù)列,當(dāng)為偶數(shù)時(shí),,所以;當(dāng)為奇數(shù)時(shí),,所以,即.綜上可得20、(1);(2).【解題分析】(1)解不等式組即得解;(2)由題得p、q一真一假,分兩種情況討論得解.【小問(wèn)1詳解】解:由題意知p是q的充分條件,即p集合包含于q集合,有;【小問(wèn)2詳解】解:當(dāng)時(shí),有,由題意知,p、q一真一假,當(dāng)p真q假時(shí),,當(dāng)p假q真時(shí),,綜上,x的取值范圍為21、(1)(2)【解題分析】(1)建立空間直角坐標(biāo)系,用點(diǎn)到面的距離公式即可算出答案;(2)先求出兩個(gè)面的法向量,然后用二面角公式即可.【小問(wèn)1詳解】∵平面平面∴PB⊥AB,PB⊥BC,又兩兩互相垂直,所以,以點(diǎn)為坐標(biāo)原點(diǎn),分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,D(3,6,0),A(0,6,0)設(shè)平面的一個(gè)法向量所以n?PD令,可得記點(diǎn)到平面的距離為,則d=【小問(wèn)2詳解】由(1)可知平面的一個(gè)法向量為平面的一個(gè)法向量為設(shè)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論