




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆西藏自治區(qū)林芝市高三數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,滿足條件(為常數(shù)),若目標(biāo)函數(shù)的最大值為9,則()A. B. C. D.2.已知函數(shù),其中表示不超過的最大正整數(shù),則下列結(jié)論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)3.已知復(fù)數(shù)z滿足i?z=2+i,則z的共軛復(fù)數(shù)是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i4.已知角的終邊經(jīng)過點,則的值是A.1或 B.或 C.1或 D.或5.設(shè)分別為的三邊的中點,則()A. B. C. D.6.是平面上的一定點,是平面上不共線的三點,動點滿足,,則動點的軌跡一定經(jīng)過的()A.重心 B.垂心 C.外心 D.內(nèi)心7.集合的真子集的個數(shù)是()A. B. C. D.8.在聲學(xué)中,聲強級(單位:)由公式給出,其中為聲強(單位:).,,那么()A. B. C. D.9.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻(xiàn).十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.10.集合的子集的個數(shù)是()A.2 B.3 C.4 D.811.已知平面向量,,,則實數(shù)x的值等于()A.6 B.1 C. D.12.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個成員檢測呈陽性的概率均為()且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當(dāng)時,最大,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)為奇函數(shù),則_______.14.設(shè)滿足約束條件,則的取值范圍是______.15.已知,滿足約束條件則的最大值為__________.16.設(shè)α、β為互不重合的平面,m,n是互不重合的直線,給出下列四個命題:①若m∥n,則m∥α;②若m?α,n?α,m∥β,n∥β,則α∥β;③若α∥β,m?α,n?β,則m∥n;④若α⊥β,α∩β=m,n?α,m⊥n,則n⊥β;其中正確命題的序號為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為;(1)求直線的直角坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交點分別為,,點,求的值.18.(12分)已知橢圓的焦距為2,且過點.(1)求橢圓的方程;(2)設(shè)為的左焦點,點為直線上任意一點,過點作的垂線交于兩點,(ⅰ)證明:平分線段(其中為坐標(biāo)原點);(ⅱ)當(dāng)取最小值時,求點的坐標(biāo).19.(12分)已知中,角,,的對邊分別為,,,已知向量,且.(1)求角的大?。唬?)若的面積為,,求.20.(12分)已知函數(shù),.(1)若,,求實數(shù)的值.(2)若,,求正實數(shù)的取值范圍.21.(12分)已知函數(shù).(1)討論函數(shù)單調(diào)性;(2)當(dāng)時,求證:.22.(10分)已知函數(shù),(Ⅰ)當(dāng)時,證明;(Ⅱ)已知點,點,設(shè)函數(shù),當(dāng)時,試判斷的零點個數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
由目標(biāo)函數(shù)的最大值為9,我們可以畫出滿足條件件為常數(shù))的可行域,根據(jù)目標(biāo)函數(shù)的解析式形式,分析取得最優(yōu)解的點的坐標(biāo),然后根據(jù)分析列出一個含參數(shù)的方程組,消參后即可得到的取值.【題目詳解】畫出,滿足的為常數(shù))可行域如下圖:由于目標(biāo)函數(shù)的最大值為9,可得直線與直線的交點,使目標(biāo)函數(shù)取得最大值,將,代入得:.故選:.【題目點撥】如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個不等式對應(yīng)的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點,然后得到一個含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值.2、C【解題分析】
根據(jù)表示不超過的最大正整數(shù),可構(gòu)建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調(diào)性,進(jìn)而下結(jié)論.【題目詳解】由表示不超過的最大正整數(shù),其函數(shù)圖象為選項A,函數(shù),故錯誤;選項B,函數(shù)為非奇非偶函數(shù),故錯誤;選項C,函數(shù)是以1為周期的周期函數(shù),故正確;選項D,函數(shù)在區(qū)間上是增函數(shù),但在整個定義域范圍上不具備單調(diào)性,故錯誤.故選:C【題目點撥】本題考查對題干的理解,屬于函數(shù)新定義問題,可作出圖象分析性質(zhì),屬于較難題.3、D【解題分析】
兩邊同乘-i,化簡即可得出答案.【題目詳解】i?z=2+i兩邊同乘-i得z=1-2i,共軛復(fù)數(shù)為1+2i,選D.【題目點撥】的共軛復(fù)數(shù)為4、B【解題分析】
根據(jù)三角函數(shù)的定義求得后可得結(jié)論.【題目詳解】由題意得點與原點間的距離.①當(dāng)時,,∴,∴.②當(dāng)時,,∴,∴.綜上可得的值是或.故選B.【題目點撥】利用三角函數(shù)的定義求一個角的三角函數(shù)值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標(biāo)x,縱坐標(biāo)y,該點到原點的距離r,然后再根據(jù)三角函數(shù)的定義求解即可.5、B【解題分析】
根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運算即可求解.【題目詳解】根據(jù)題意,可得幾何關(guān)系如下圖所示:,故選:B【題目點撥】本題考查了向量加法的線性運算,屬于基礎(chǔ)題.6、B【解題分析】
解出,計算并化簡可得出結(jié)論.【題目詳解】λ(),∴,∴,即點P在BC邊的高上,即點P的軌跡經(jīng)過△ABC的垂心.故選B.【題目點撥】本題考查了平面向量的數(shù)量積運算在幾何中的應(yīng)用,根據(jù)條件中的角計算是關(guān)鍵.7、C【解題分析】
根據(jù)含有個元素的集合,有個子集,有個真子集,計算可得;【題目詳解】解:集合含有個元素,則集合的真子集有(個),故選:C【題目點撥】考查列舉法的定義,集合元素的概念,以及真子集的概念,對于含有個元素的集合,有個子集,有個真子集,屬于基礎(chǔ)題.8、D【解題分析】
由得,分別算出和的值,從而得到的值.【題目詳解】∵,∴,∴,當(dāng)時,,∴,當(dāng)時,,∴,∴,故選:D.【題目點撥】本小題主要考查對數(shù)運算,屬于基礎(chǔ)題.9、D【解題分析】分析:根據(jù)等比數(shù)列的定義可知每一個單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數(shù)列的實際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.10、D【解題分析】
先確定集合中元素的個數(shù),再得子集個數(shù).【題目詳解】由題意,有三個元素,其子集有8個.故選:D.【題目點撥】本題考查子集的個數(shù)問題,含有個元素的集合其子集有個,其中真子集有個.11、A【解題分析】
根據(jù)向量平行的坐標(biāo)表示即可求解.【題目詳解】,,,,即,故選:A【題目點撥】本題主要考查了向量平行的坐標(biāo)運算,屬于容易題.12、A【解題分析】
根據(jù)題意分別求出事件A:檢測5個人確定為“感染高危戶”發(fā)生的概率和事件B:檢測6個人確定為“感染高危戶”發(fā)生的概率,即可得出的表達(dá)式,再根據(jù)基本不等式即可求出.【題目詳解】設(shè)事件A:檢測5個人確定為“感染高危戶”,事件B:檢測6個人確定為“感染高危戶”,∴,.即設(shè),則∴當(dāng)且僅當(dāng)即時取等號,即.故選:A.【題目點撥】本題主要考查概率的計算,涉及相互獨立事件同時發(fā)生的概率公式的應(yīng)用,互斥事件概率加法公式的應(yīng)用,以及基本不等式的應(yīng)用,解題關(guān)鍵是對題意的理解和事件的分解,意在考查學(xué)生的數(shù)學(xué)運算能力和數(shù)學(xué)建模能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13、-2【解題分析】
由是定義在上的奇函數(shù),可知對任意的,都成立,代入函數(shù)式可求得的值.【題目詳解】由題意,的定義域為,,是奇函數(shù),則,即對任意的,都成立,故,整理得,解得.故答案為:.【題目點撥】本題考查奇函數(shù)性質(zhì)的應(yīng)用,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.14、【解題分析】
作出可行域,將目標(biāo)函數(shù)整理為可視為可行解與的斜率,則由圖可知或,分別計算出與,再由不等式的簡單性質(zhì)即可求得答案.【題目詳解】作出滿足約束條件的可行域,顯然當(dāng)時,z=0;當(dāng)時將目標(biāo)函數(shù)整理為可視為可行解與的斜率,則由圖可知或顯然,聯(lián)立,所以則或,故或綜上所述,故答案為:【題目點撥】本題考查分式型目標(biāo)函數(shù)的線性規(guī)劃問題,屬于簡單題.15、1【解題分析】
先畫出約束條件的可行域,根據(jù)平移法判斷出最優(yōu)點,代入目標(biāo)函數(shù)的解析式,易可得到目標(biāo)函數(shù)的最大值.【題目詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當(dāng)平行直線過點時,取得最大值為:.故答案為:1.【題目點撥】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.16、④【解題分析】
根據(jù)直線和平面,平面和平面的位置關(guān)系依次判斷每個選項得到答案.【題目詳解】對于①,當(dāng)m∥n時,由直線與平面平行的定義和判定定理,不能得出m∥α,①錯誤;對于②,當(dāng)m?α,n?α,且m∥β,n∥β時,由兩平面平行的判定定理,不能得出α∥β,②錯誤;對于③,當(dāng)α∥β,且m?α,n?β時,由兩平面平行的性質(zhì)定理,不能得出m∥n,③錯誤;對于④,當(dāng)α⊥β,且α∩β=m,n?α,m⊥n時,由兩平面垂直的性質(zhì)定理,能夠得出n⊥β,④正確;綜上知,正確命題的序號是④.故答案為:④.【題目點撥】本題考查了直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的空間想象能力和推斷能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ),曲線(Ⅱ)【解題分析】試題分析:(1)消去參數(shù)可得直線的直角坐標(biāo)系方程,由可得曲線的直角坐標(biāo)方程;(2)將(為參數(shù))代入曲線的方程得:,,利用韋達(dá)定理求解即可.試題解析:(1),曲線,(2)將(為參數(shù))代入曲線的方程得:.所以.所以.18、(1)(2)(?。┮娊馕觯áⅲc的坐標(biāo)為.【解題分析】
(1)由題意得,再由的關(guān)系求出,即可得橢圓的標(biāo)準(zhǔn)方程;(2)(i)設(shè),的中點為,,設(shè)直線的方程為,代入橢圓方程中,運用根與系數(shù)的關(guān)系和中點坐標(biāo)公式,結(jié)合三點共線的方法:斜率相等,即可得證;(ii)利用兩點間的距離公式及弦長公式將表示出來,由換元法的對勾函數(shù)的單調(diào)性,可得取最小值時的條件獲得等量關(guān)系,從而確定點的坐標(biāo).【題目詳解】解:(1)由題意得,,所以,所以橢圓方程為(2)設(shè),的中點為,(?。┳C明:由,可設(shè)直線的方程為,代入橢圓方程,得,所以,所以,則直線的斜率為,因為,所以,所以三點共線,所以平分線段;(ii)由兩點間的距離公式得由弦長公式得所以,令,則,由在上遞增,可得,即時,取得最小值4,所以當(dāng)取最小值時,點的坐標(biāo)為【題目點撥】此題考那可是橢圓方程和性質(zhì),主要考查橢圓方程的運用,運用根與系數(shù)的關(guān)系和中點坐標(biāo)公式,同時考查弦長公式,屬于較難題.19、(1);(2).【解題分析】試題分析:(1)利用已知及平面向量數(shù)量積運算可得,利用正弦定理可得,結(jié)合,可求,從而可求的值;(2)由三角形的面積可解得,利用余弦定理可得,故可得.試題解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.20、(1)1(2)【解題分析】
(1)求得和,由,,得,令,令導(dǎo)數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導(dǎo)數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導(dǎo)數(shù)得到的單調(diào)性,分類討論,即可求解.解法二:可利用導(dǎo)數(shù),先證明不等式,,,,令(),利用導(dǎo)數(shù),分類討論得出函數(shù)的單調(diào)性與最值,即可求解.【題目詳解】(1)由題意,得,,由,…①,得,令,則,因為,所以在單調(diào)遞增,又,所以當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;所以,當(dāng)且僅當(dāng)時等號成立.故方程①有且僅有唯一解,實數(shù)的值為1.(2)解法一:令(),則,所以當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;故.令(),則.(i)若時,,在單調(diào)遞增,所以,滿足題意.(ii)若時,,滿足題意.(iii)若時,,在單調(diào)遞減,所以.不滿足題意.綜上述:.解法二:先證明不等式,,,…(*).令,則當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,所以,即.變形得,,所以時,,所以當(dāng)時,.又由上式得,當(dāng)時,,,.因此不等式(*)均成立.令(),則,(i)若時,當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;故.(ii)若時,,在單調(diào)遞增,所以.因此,①當(dāng)時,此時,,,則需由(*)知,,(當(dāng)且僅當(dāng)時等號成立),所以.②當(dāng)時,此時,,則當(dāng)時,(由(*)知);當(dāng)時,(由(*)知).故對于任意,.綜上述:.【題目點撥】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于恒成立問題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能農(nóng)業(yè)作物損壞賠償與病蟲害防治服務(wù)協(xié)議
- 二零二五醫(yī)療事故賠償協(xié)議書撰寫要點解析
- 2025年度智能化住宅房屋租賃定金合同模板范文
- 二零二五年度知識產(chǎn)權(quán)戰(zhàn)略布局專利代理合同
- 二零二五年度主播才藝展示及經(jīng)紀(jì)管理協(xié)議
- 二零二五年度能源合同可撤銷條款與節(jié)能減排合同
- 二零二五年度全新辦公區(qū)轉(zhuǎn)租協(xié)議合同:商務(wù)辦公空間租賃權(quán)轉(zhuǎn)讓
- 二零二五年度合同管理制及流程圖編制與執(zhí)行標(biāo)準(zhǔn)合同
- 2025年度智能醫(yī)療設(shè)備研發(fā)團(tuán)隊技術(shù)人員勞動合同
- 二零二五年度新材料專利共享許可協(xié)議
- 2025年高考語文備考訓(xùn)練之社會現(xiàn)象:“數(shù)字囤積癥”
- 2025包頭青山賓館有限公司面向社會公開招聘18人筆試參考題庫附帶答案詳解
- 《運營管理 第7版》課件全套 馬風(fēng)才 第01-15章 運營管理概論- 互聯(lián)網(wǎng)運營
- 課件-DeepSeek從入門到精通
- 2025至2030年中國毛絨卡通玩具數(shù)據(jù)監(jiān)測研究報告
- 2025年度智能充電樁場地租賃合同范本3篇
- 心電監(jiān)護(hù)儀的操作及注意事項 課件
- GB/T 718-2024鑄造用生鐵
- 細(xì)胞生物學(xué)(全套1047張課件)
- 結(jié)構(gòu)力學(xué)+李廉錕版-+第七章 力法
- 第二章--美國學(xué)前教育--比較學(xué)前教育PPT
評論
0/150
提交評論