版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆上海市青浦區(qū)高三數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.運(yùn)行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.20172.已知為實(shí)數(shù)集,,,則()A. B. C. D.3.我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測(cè)雨”題:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺(tái)體的體積公式).A.2寸 B.3寸 C.4寸 D.5寸4.若復(fù)數(shù)(為虛數(shù)單位)的實(shí)部與虛部相等,則的值為()A. B. C. D.5.復(fù)數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i6.已知,則“直線與直線垂直”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.8.執(zhí)行如下的程序框圖,則輸出的是()A. B.C. D.9.已知底面為邊長為的正方形,側(cè)棱長為的直四棱柱中,是上底面上的動(dòng)點(diǎn).給出以下四個(gè)結(jié)論中,正確的個(gè)數(shù)是()①與點(diǎn)距離為的點(diǎn)形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個(gè)面上的正投影長度之和的最大值為.A. B. C. D.10.若函數(shù),在區(qū)間上任取三個(gè)實(shí)數(shù),,均存在以,,為邊長的三角形,則實(shí)數(shù)的取值范圍是()A. B. C. D.11.在中,點(diǎn)D是線段BC上任意一點(diǎn),,,則()A. B.-2 C. D.212.已知向量,,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量滿足,且,則_________.14.已知向量,,則______.15.請(qǐng)列舉用0,1,2,3這4個(gè)數(shù)字所組成的無重復(fù)數(shù)字且比210大的所有三位奇數(shù):___________.16.的展開式中項(xiàng)的系數(shù)為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,四邊形是矩形,,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面平面;(2)求二面角的余弦值.18.(12分)對(duì)于非負(fù)整數(shù)集合(非空),若對(duì)任意,或者,或者,則稱為一個(gè)好集合.以下記為的元素個(gè)數(shù).(1)給出所有的元素均小于的好集合.(給出結(jié)論即可)(2)求出所有滿足的好集合.(同時(shí)說明理由)(3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數(shù)倍.19.(12分)已知三點(diǎn)在拋物線上.(Ⅰ)當(dāng)點(diǎn)的坐標(biāo)為時(shí),若直線過點(diǎn),求此時(shí)直線與直線的斜率之積;(Ⅱ)當(dāng),且時(shí),求面積的最小值.20.(12分)已知函數(shù)(1)求f(x)的單調(diào)遞增區(qū)間;(2)△ABC內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.21.(12分)已知函數(shù),的最大值為.求實(shí)數(shù)b的值;當(dāng)時(shí),討論函數(shù)的單調(diào)性;當(dāng)時(shí),令,是否存在區(qū)間,,使得函數(shù)在區(qū)間上的值域?yàn)??若存在,求?shí)數(shù)k的取值范圍;若不存在,請(qǐng)說明理由.22.(10分)已知是公比為的無窮等比數(shù)列,其前項(xiàng)和為,滿足,________.是否存在正整數(shù),使得?若存在,求的最小值;若不存在,說明理由.從①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在上面問題中并作答.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
依次運(yùn)行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán).輸出1.選D.2、C【解析】
求出集合,,,由此能求出.【詳解】為實(shí)數(shù)集,,,或,.故選:.【點(diǎn)睛】本題考查交集、補(bǔ)集的求法,考查交集、補(bǔ)集的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.3、B【解析】試題分析:根據(jù)題意可得平地降雨量,故選B.考點(diǎn):1.實(shí)際應(yīng)用問題;2.圓臺(tái)的體積.4、C【解析】
利用復(fù)數(shù)的除法,以及復(fù)數(shù)的基本概念求解即可.【詳解】,又的實(shí)部與虛部相等,,解得.故選:C【點(diǎn)睛】本題主要考查復(fù)數(shù)的除法運(yùn)算,復(fù)數(shù)的概念運(yùn)用.5、B【解析】
復(fù)數(shù)為純虛數(shù),則實(shí)部為0,虛部不為0,求出,即得.【詳解】∵為純虛數(shù),∴,解得..故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的分類,屬于基礎(chǔ)題.6、B【解析】
由兩直線垂直求得則或,再根據(jù)充要條件的判定方法,即可求解.【詳解】由題意,“直線與直線垂直”則,解得或,所以“直線與直線垂直”是“”的必要不充分條件,故選B.【點(diǎn)睛】本題主要考查了兩直線的位置關(guān)系,及必要不充分條件的判定,其中解答中利用兩直線的位置關(guān)系求得的值,同時(shí)熟記充要條件的判定方法是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.7、D【解析】
根據(jù)框圖,模擬程序運(yùn)行,即可求出答案.【詳解】運(yùn)行程序,,
,,,,,結(jié)束循環(huán),故輸出,故選:D.【點(diǎn)睛】本題主要考查了程序框圖,循環(huán)結(jié)構(gòu),條件分支結(jié)構(gòu),屬于中檔題.8、A【解析】
列出每一步算法循環(huán),可得出輸出結(jié)果的值.【詳解】滿足,執(zhí)行第一次循環(huán),,;成立,執(zhí)行第二次循環(huán),,;成立,執(zhí)行第三次循環(huán),,;成立,執(zhí)行第四次循環(huán),,;成立,執(zhí)行第五次循環(huán),,;成立,執(zhí)行第六次循環(huán),,;成立,執(zhí)行第七次循環(huán),,;成立,執(zhí)行第八次循環(huán),,;不成立,跳出循環(huán)體,輸出的值為,故選:A.【點(diǎn)睛】本題考查算法與程序框圖的計(jì)算,解題時(shí)要根據(jù)算法框圖計(jì)算出算法的每一步,考查分析問題和計(jì)算能力,屬于中等題.9、C【解析】
①與點(diǎn)距離為的點(diǎn)形成以為圓心,半徑為的圓弧,利用弧長公式,可得結(jié)論;②當(dāng)在(或時(shí),與面所成角(或的正切值為最小,當(dāng)在時(shí),與面所成角的正切值為最大,可得正切值取值范圍是;③設(shè),,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個(gè)面上的正投影長度之和.【詳解】如圖:①錯(cuò)誤,因?yàn)?,與點(diǎn)距離為的點(diǎn)形成以為圓心,半徑為的圓弧,長度為;②正確,因?yàn)槊婷?,所以點(diǎn)必須在面對(duì)角線上運(yùn)動(dòng),當(dāng)在(或)時(shí),與面所成角(或)的正切值為最?。橄碌酌婷鎸?duì)角線的交點(diǎn)),當(dāng)在時(shí),與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設(shè),則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個(gè)面上的正投影長度之,當(dāng)且僅當(dāng)在時(shí)取等號(hào).故選:.【點(diǎn)睛】本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識(shí)點(diǎn),綜合性強(qiáng),屬于難題.10、D【解析】
利用導(dǎo)數(shù)求得在區(qū)間上的最大值和最小,根據(jù)三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域?yàn)椋?,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區(qū)間上的最大值為.要使在區(qū)間上任取三個(gè)實(shí)數(shù),,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當(dāng)、時(shí),成立,即,且,解得.所以的取值范圍是.故選:D【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查恒成立問題的求解,屬于中檔題.11、A【解析】
設(shè),用表示出,求出的值即可得出答案.【詳解】設(shè)由,,.故選:A【點(diǎn)睛】本題考查了向量加法、減法以及數(shù)乘運(yùn)算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎(chǔ)題.12、A【解析】
利用平面向量平行的坐標(biāo)條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點(diǎn)睛】本題考查向量平行定理,考查向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由數(shù)量積的運(yùn)算律求得,再由數(shù)量積的定義可得結(jié)論.【詳解】由題意,∴,即,∴.故答案為:.【點(diǎn)睛】本題考查求向量的夾角,掌握數(shù)量積的定義與運(yùn)算律是解題關(guān)鍵.14、【解析】
求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運(yùn)算計(jì)算.【詳解】由題意得,.,.,,.故答案為:.【點(diǎn)睛】本題考查求向量的模,掌握數(shù)量積的定義與運(yùn)算律是解題基礎(chǔ).本題關(guān)鍵是用數(shù)量積的定義把模的運(yùn)算轉(zhuǎn)化為數(shù)量積的運(yùn)算.15、231,321,301,1【解析】
分個(gè)位數(shù)字是1、3兩種情況討論,即得解【詳解】0,1,2,3這4個(gè)數(shù)字所組成的無重復(fù)數(shù)字比210大的所有三位奇數(shù)有:(1)當(dāng)個(gè)位數(shù)字是1時(shí),數(shù)字可以是231,321,301;(2)當(dāng)個(gè)位數(shù)字是3時(shí)數(shù)字可以是1.故答案為:231,321,301,1【點(diǎn)睛】本題考查了分類計(jì)數(shù)法的應(yīng)用,考查了學(xué)生分類討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.16、40【解析】
根據(jù)二項(xiàng)定理展開式,求得r的值,進(jìn)而求得系數(shù).【詳解】根據(jù)二項(xiàng)定理展開式的通項(xiàng)式得所以,解得所以系數(shù)【點(diǎn)睛】本題考查了二項(xiàng)式定理的簡單應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)取中點(diǎn),中點(diǎn),連接,,.設(shè)交于,則為的中點(diǎn),連接.通過證明,證得平面,由此證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)取中點(diǎn),中點(diǎn),連接,,.設(shè)交于,則為的中點(diǎn),連接.設(shè),則,,∴.由已知,,∴平面,∴.∵,∴,∵,∴平面,∵平面,∴平面平面.(2)由(1)及已知可得平面,建立如圖所示的空間坐標(biāo)系,設(shè),則,,,,,,,,設(shè)平面的法向量為,∴,令得.設(shè)平面的法向量為,∴,令得,∴,∴二面角的余弦值為.【點(diǎn)睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1),,,.(2);證明見解析.(3)證明見解析.【解析】
(1)根據(jù)好集合的定義列舉即可得到結(jié)果;(2)設(shè),其中,由知;由可知或,分別討論兩種情況可的結(jié)果;(3)記,則,設(shè),由歸納推理可求得,從而得到,從而得到,可知存在元素滿足題意.【詳解】(1),,,.(2)設(shè),其中,則由題意:,故,即,考慮,可知:,或,若,則考慮,,,則,,但此時(shí),,不滿足題意;若,此時(shí),滿足題意,,其中為相異正整數(shù).(3)記,則,首先,,設(shè),其中,分別考慮和其他任一元素,由題意可得:也在中,而,,,對(duì)于,考慮,,其和大于,故其差,特別的,,,由,且,,以此類推:,,此時(shí),故中存在元素,使得中所有元素均為的整數(shù)倍.【點(diǎn)睛】本題考查集合中的新定義問題的求解,關(guān)鍵是明確已知中所給的新定義的具體要求,根據(jù)集合元素的要求進(jìn)行推理說明,對(duì)于學(xué)生分析和解決問題能力、邏輯推理能力有較高的要求,屬于較難題.19、(Ⅰ);(Ⅱ)16.【解析】
(Ⅰ)設(shè)出直線的方程并代入拋物線方程,利用韋達(dá)定理以及斜率公式,變形可得;(Ⅱ)利用,,的斜率,求得的坐標(biāo),,再用基本不等式求得的最小值,從而可得三角形的面積的最小值.【詳解】解:(Ⅰ)設(shè)直線的方程為.聯(lián)立方程組,得,,故,.所以;(Ⅱ)不妨設(shè)的三個(gè)頂點(diǎn)中的兩個(gè)頂點(diǎn)在軸右側(cè)(包括軸),設(shè),,,的斜率為,又,則,①因?yàn)椋寓谟散佗诘?,,(且)從而?dāng)且僅當(dāng)時(shí)取“”號(hào),從而,所以面積的最小值為.【點(diǎn)睛】本題考查了直線與拋物線的綜合,屬于中檔題.20、(1)(2)【解析】
(1)利用降次公式、輔助角公式化簡解析式,根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)遞增區(qū)間.(2)先由求得,利用正弦定理得到,結(jié)合余弦定理列方程,求得,由此求得三角形的面積.【詳解】(1)函數(shù),,由,得.所以的單調(diào)遞增區(qū)間為.(2)因?yàn)榍覟殇J角,所以.由及正弦定理可得,又,由余弦定理可得,解得,.【點(diǎn)睛】本小題主要考查三角恒等變換,考查三角函數(shù)單調(diào)區(qū)間的求法,考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.21、(1);(2)時(shí),在單調(diào)增;時(shí),在單調(diào)遞減,在單調(diào)遞增;時(shí),同理在單調(diào)遞減,在單調(diào)遞增;(3)不存在.【解析】分析:(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)時(shí),取得極大值,也是最大值,由,可得結(jié)果;(2)求出,分三種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(3)假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個(gè)不相等的實(shí)根,進(jìn)而可得結(jié)果.詳解:(1)由題意得,令,解得,當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減.所以當(dāng)時(shí),取得極大值,也是最大值,所以,解得.(2)的定義域?yàn)?①即,則,故在單調(diào)增②若,而,故,則當(dāng)時(shí),;當(dāng)及時(shí),故在單調(diào)遞減,在單調(diào)遞增.③若,即,同理在單調(diào)遞減,在單調(diào)遞增(3)由(1)知,所以,令,則對(duì)恒成立,所以在區(qū)間內(nèi)單調(diào)遞增,所以恒成立,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增.假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個(gè)不相等的實(shí)根,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度城市公共交通車輛運(yùn)營管理合同3篇
- 2025年度柴油市場(chǎng)分析與預(yù)測(cè)服務(wù)合同范本4篇
- 專業(yè)設(shè)備銷售協(xié)議模板集(2024版)版
- 2025年廠區(qū)綠化生態(tài)教育推廣與培訓(xùn)服務(wù)協(xié)議4篇
- 2024年起重機(jī)研發(fā)與購銷合作項(xiàng)目合同范本3篇
- 二零二四家居建材店員工勞動(dòng)合同模板3篇
- 2025年度智能機(jī)器人技術(shù)研發(fā)合作協(xié)議4篇
- 2024版企業(yè)技術(shù)改造借款的合同范本
- 二零二五版醫(yī)療設(shè)備采購與租賃合同范本3篇
- 2024年04月吉林銀行總行投資銀行部2024年社會(huì)招考1名負(fù)責(zé)人筆試歷年參考題庫附帶答案詳解
- GB/T 6913-2008鍋爐用水和冷卻水分析方法磷酸鹽的測(cè)定
- GB/T 18717.2-2002用于機(jī)械安全的人類工效學(xué)設(shè)計(jì)第2部分:人體局部進(jìn)入機(jī)械的開口尺寸確定原則
- 教案:第三章 公共管理職能(《公共管理學(xué)》課程)
- 中國文化概論(第三版)全套課件
- 117-鋼結(jié)構(gòu)工程質(zhì)量常見問題與管控措施
- SHS5230三星指紋鎖中文說明書
- 諾和關(guān)懷俱樂部對(duì)外介紹
- 保定市縣級(jí)地圖PPT可編輯矢量行政區(qū)劃(河北省)
- 新蘇教版科學(xué)六年級(jí)下冊(cè)全冊(cè)教案(含反思)
- 供方注冊(cè)指南-ZTE
- 真心英雄合唱歌詞
評(píng)論
0/150
提交評(píng)論