吉林省四平市高職單招2023年數(shù)學模擬試卷二_第1頁
吉林省四平市高職單招2023年數(shù)學模擬試卷二_第2頁
吉林省四平市高職單招2023年數(shù)學模擬試卷二_第3頁
吉林省四平市高職單招2023年數(shù)學模擬試卷二_第4頁
吉林省四平市高職單招2023年數(shù)學模擬試卷二_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

吉林省四平市高職單招2023年數(shù)學模擬試卷二學校:________班級:________姓名:________考號:________

一、單選題(10題)1.在2,0,1,5這組數(shù)據(jù)中,隨機取出三個不同的數(shù),則數(shù)字2是取出的三個不同數(shù)的中位數(shù)的概率為()A.3/4B.5/8C.1/2D.1/4

2.已知全集U=R,集合A={x|x>2},則CuA=()A.{x|x≤1}B.{x|x<1}C.{x|x<2}D.{x|x≤2}

3.某中學有高中生3500人,初中生1500人.為了解學生的學習情況,用分層抽樣的方法從該校學生中抽取一個容量為n的樣本,已知從高中生中抽取70人,則n為()A.100B.150C.200D.250

4.已知a=(1,-1),b=(-1,2),則(2a+b)×a=()A.1B.-1C.0D.2

5.袋中有大小相同的三個白球和兩個黑球,從中任取兩個球,兩球同色的概率為()A.1/5B.2/5C.3/5D.4/5

6.A.B.C.D.

7.(X-2)6的展開式中X2的系數(shù)是D()A.96B.-240C.-96D.240

8.已知雙曲線x2/a2-y2/b2=1的實軸長為2,離心率為2,則雙曲線C的焦點坐標是()A.(±1,0)B.(±2,0)C.(0,±2)D.(±1,0)

9.設i是虛數(shù)單位,若z/i=(i-3)/(1+i)則復數(shù)z的虛部為()A.-2B.2C.-1D.1

10.A.B.C.

二、填空題(10題)11.圓心在直線2x-y-7=0上的圓C與y軸交于兩點A(0,-4),B(0,一2),則圓C的方程為___________.

12.二項式的展開式中常數(shù)項等于_____.

13.若向量a=(2,-3)與向量b=(-2,m)共線,則m=

。

14.五位同學站成一排,其中甲既不站在排頭也不站在排尾的排法有_____種.

15.

16.在P(a,3)到直線4x-3y+1=0的距離是4,則a=_____.

17.為橢圓的焦點,P為橢圓上任一點,則的周長是_____.

18.當0<x<1時,x(1-x)取最大值時的值為________.

19.在△ABC中,C=60°,AB=,BC=,那么A=____.

20.執(zhí)行如圖所示的程序框圖,若輸入的k=11,則輸出的S=_______.

三、計算題(5題)21.有語文書3本,數(shù)學書4本,英語書5本,書都各不相同,要把這些書隨機排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。

22.己知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,求公差d.

23.近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。

24.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

25.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。

四、簡答題(10題)26.在ABC中,BC=,AC=3,sinC=2sinA(1)求AB的值(2)求的值

27.拋物線的頂點在原點,焦點為橢圓的左焦點,過點M(-1,-1)引拋物線的弦使M為弦的中點,求弦長

28.已知拋物線y2=4x與直線y=2x+b相交與A,B兩點,弦長為,求b的值。

29.解關于x的不等式

30.已知函數(shù).(1)求f(x)的定義域;(2)判斷f(x)的奇偶性,并加以證明;(3)a>1時,判斷函數(shù)的單調(diào)性并加以證明。

31.求k為何值時,二次函數(shù)的圖像與x軸(1)有2個不同的交點(2)只有1個交點(3)沒有交點

32.已知A,B分別是橢圓的左右兩個焦點,o為坐標的原點,點P(-1,)在橢圓上,線段PB與y軸的焦點M為線段PB的中心點,求橢圓的標準方程

33.已知函數(shù):,求x的取值范圍。

34.設函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當x<0時,判斷f(x)的單調(diào)性并加以證明.

35.如圖,四棱錐P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求證:BC丄平面PAC。(2)求點B到平面PCD的距離。

五、解答題(10題)36.在直角梯形ABCD中,AB//DC,AB丄BC,且AB=4,BC=CD=2.點M為線段AB上的一動點,過點M作直線a丄AB.令AM=x,記梯形位于直線a左側部分的面積S=f(x).(1)求函數(shù)f(x)的解析式;(2)作出函數(shù)f(x)的圖象.

37.

38.已知函數(shù)f(x)=log21+x/1-x.(1)求f(x)的定義域;(2)討論f(x)的奇偶性;(3)用定義討論f(x)的單調(diào)性.

39.如圖,AB是⊙O的直徑,P是⊙O所在平面外一點,PA垂直于⊙O所在的平面,且PA=AB=10,設點C為⊙O上異于A,B的任意一點.(1)求證:BC⊥平面PAC;(2)若AC=6,求三棱錐C-PAB的體積.

40.

41.已知橢圓C的重心在坐標原點,兩個焦點的坐標分別為F1(4,0),F(xiàn)2(-4,0),且橢圓C上任一點到兩焦點的距離和等于10.求:(1)橢圓C的標準方程;(2)設橢圓C上一點M使得直線F1M與直線F2M垂直,求點M的坐標.

42.

43.已知數(shù)列{an}是等差數(shù)列,且a2=3,a4+a5+a6=27(1)求通項公式an(2)若bn=a2n,求數(shù)列{bn}的前n項和Tn.

44.

45.已知A,B分別是橢圓的左右兩個焦點,o為坐標的原點,點P(-1,)在橢圓上,線段PB與y軸的焦點M為線段PB的中心點,求橢圓的標準方程

六、單選題(0題)46.設a,b為實數(shù),則a2=b2的充要條件是()A.a=bB.a=-bC.a2=b2

D.|a|=|b|

參考答案

1.C隨機抽樣的概率.分析題意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4種取法,符合題意的取法有2種,故所求概率P=1/2.故選C

2.D補集的計算.由A={x|x>2},全集U=R,則CuA={x|x≤2}

3.A分層抽樣方法.樣本抽取比70/3500=1/50例為該??側藬?shù)為1500+3500=5000,則=n/5000=1/50,∴n=100.

4.A平面向量的線性運算.因為a=(1,-1),b=(-1,2),所以2a+b=2(1,-1)+(-1,2)=(1,0),得(2a+b)×a==(1,0)×(1,-1)=1

5.B

6.B

7.D

8.B雙曲線的定義.∵2a=2,∴a=1,又c/a=2,∴.c=2,∴雙曲線C的焦點坐標是(±2,0).

9.C復數(shù)的運算及定義.

10.A

11.(x-2)2+(y+3)2=5圓的方程.圓心在AB中垂線y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圓C的方程為(x-2)2+(y+3)2=5

12.15,由二項展開式的通項可得,令12-3r=0,得r=4,所以常數(shù)項為。

13.3由于兩向量共線,所以2m-(-2)(-3)=0,得m=3.

14.72,

15.4.5

16.-3或7,

17.18,

18.1/2均值不等式求最值∵0<

19.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由題知BC<AB,得A<C,所以A=45°.

20.15程序框圖的運算.模擬程序的運行,可得k=11,n=1,S=1不滿足條件S>11,執(zhí)行循環(huán)體,n=2,S=3,不滿足條件S>11,執(zhí)行循環(huán)體,n=3,S=6,不滿足條件S>11,執(zhí)行循環(huán)體,n=4,S=10,不滿足條件S>11,執(zhí)行循環(huán)體,N=5,S=15,此時,滿足條件S>11,退出循環(huán),輸出S的值為15.故答案為15.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.(1)-1<x<1(2)奇函數(shù)(3)單調(diào)遞增函數(shù)

31.∵△(1)當△>0時,又兩個不同交點(2)當A=0時,只有一個交點(3)當△<0時,沒有交點

32.點M是線段PB的中點又∵OM丄AB,∴PA丄AB則c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此橢圓的標準方程為

33.

X>4

34.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)設-1<<<0∵

若時

故當X<-1時為增函數(shù);當-1≤X<0為減函數(shù)

35.證明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC則BC丄平面PAC(2)設點B到平面PCD的距離為hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1則△ADC為等邊三角形,且AC=1PA=

PD=PC=2

36.

37.

38.(1)要使函數(shù)f(x)=㏒21+x/1-x有意義,則須1+x/1-x>0解得-1<x<1,所以f(x)的定義域為{x|-1<x<1}.(2)因為f(x)的定義域為{x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x).所以f(x)是定義在(-1,1)上的奇函數(shù).(3)設-1<x1<x2<1,則f(x1)-f(x2)=log1+x1/1+x2=㏒(1+x1)(1-x2)f(1-x1)(1+x2)∵-1<x1<x2<1

39.(1)∵PA垂直于⊙O所在的平面,BC包含于⊙O所在的平面,∴PA⊥BC,又∵AB為⊙O的直徑,C為⊙O上異于A、B的-點,AC⊥BC,且PA∩AC=A,∴BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論